Python实现最优k折叠的示例代码

本文介绍了如何使用Python实现k折交叉验证,包括创建k折叠对象、生成训练和测试数据的索引,以及k折叠在避免过度拟合和欠拟合、评估模型稳定性方面的作用。同时,讨论了寻找最优k值的重要性,提出了网格搜索法、自适应K折叠交叉验证法和统计学方法等策略,并强调最优k值的选择依赖于具体的数据集和任务类型。
摘要由CSDN通过智能技术生成
  • 1.如何实现k折叠
from sklearn.model_selection import KFold
import numpy as np

# 创建一个包含10个样本的数据集
X = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], 
              [11, 12], [13, 14], [15, 16], [17, 18], [19, 20]])

# 创建一个包含10个标签的数组
y = np.array([0, 1, 0, 1, 0, 1, 0, 1, 0, 1])

# 初始化k值
k = 5

# 创建k折叠的对象
kf = KFold(n_splits=k, shuffle=True)

# 迭代k次,每次使用不同的训练和测试集
for train_index, test_index in kf.split(X):
    # 输出训练集和测试集的索引
    print("TRAIN:", train_index, "TEST:", test_index)
    # 使用索引选择数据集的训练集和测试集
    X_train, X_test = X[train_index], X[test_index]
    y_train, y_test = y[train_index], y[test_index]

    # 训练模型
    # ...

    # 测试模型
    # ...

在此示例中,使用了 sklearn.model_selection.KFold 类来创建一个k折叠对象。

然后,使用 split() 方法来生成训练和测试数据集的索引。split() 方法返回一个可迭代的生成器对象,该对象生成k个元组,每个元组包含训练集和测试集

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值