- 1.如何实现k折叠
from sklearn.model_selection import KFold
import numpy as np
# 创建一个包含10个样本的数据集
X = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10],
[11, 12], [13, 14], [15, 16], [17, 18], [19, 20]])
# 创建一个包含10个标签的数组
y = np.array([0, 1, 0, 1, 0, 1, 0, 1, 0, 1])
# 初始化k值
k = 5
# 创建k折叠的对象
kf = KFold(n_splits=k, shuffle=True)
# 迭代k次,每次使用不同的训练和测试集
for train_index, test_index in kf.split(X):
# 输出训练集和测试集的索引
print("TRAIN:", train_index, "TEST:", test_index)
# 使用索引选择数据集的训练集和测试集
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
# 训练模型
# ...
# 测试模型
# ...
在此示例中,使用了 sklearn.model_selection.KFold
类来创建一个k折叠对象。
然后,使用 split()
方法来生成训练和测试数据集的索引。split()
方法返回一个可迭代的生成器对象,该对象生成k个元组,每个元组包含训练集和测试集