机器学习(python代码):训练四种学习算法并输出auc

本文分享了一段Python代码,用于训练四种机器学习算法,并计算AUC作为模型性能指标。作者鼓励读者自行查找并导入相关库,以增进学习。如果有任何问题或建议,可以在评论区交流。
摘要由CSDN通过智能技术生成

**不多说,直接上代码,为了防止直接抄而不是为了学习,我决定把相关的库就不放上去了,自己上网搜索库中包含的方法即可

def load_data():
    data = pd.read_csv()#需要输入相关文件路径,如果是其他文件的需要查询pandas的read_其他格式
    lable = pd.read_csv()
    data_lable = data.merge(lable, how="left", on="USRID")
    data_lable.drop(['USRID'], axis=1, inplace=True)
    columns = data_lable.columns.tolist()
    # print(columns)
    feature_columns = [i for i in columns if i != "FLAG"]
    # print(feature_columns)
    data_array = data_lable[feature_columns].values#数据集
    lable_array = data_lable['FLAG'].values#标签集
    return train_test_split(data_array, lable_array, test_size = 0.25, random_state = 81,stratify = lable_array)#用于随机将样本集合划分为训练集 和测试集,并返回划分好的训练集和测试集数据。

    
def test_decision_tree(*data):
    X_train,X_test,y_train,y_test=data
    clf = DecisionTreeClassifier(criterion="entropy", max_d
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值