探寻Graphomer

Graphomer设计理念源于Transformer,旨在利用Self-Attention解决图问题。它通过中心性编码(Centrality Encoding)、空间编码(Spatial Encoding)和边信息编码(Edge Encoding)来捕获图数据的结构信息。中心性编码结合节点特征、出度和入度信息;空间编码结合自注意力机制和编码器得到的标量;边信息编码则根据最短路径上边的特征和学习权重进行加权求和。将这三种编码应用于Transformer架构中,形成了Graphomer。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.Graphomer设计理念

想当年Transformer在处理序列数据方面大火之前曾遇到一个非常尴尬的问题:Self-Attention的思路固然新奇且强大,但将其直接运用于序列数据时效果却非常差,这是因为Self-Attention只是在计算每个元素之间的相关性,并没有将元素之间的位置信息考虑在内,从而有了Transformer的诞生:对每个位置进行编码并加入对应位置的元素特征中,性能得到了极大的提升。
如今Graphomer遇到了同样的问题,微软亚研院的高手们依然想利用Self-Attention的强大机制来拟合图问题,那么关键点就在于——如何将图数据的结构信息编码以及如何加入模型中。

2.Graphomer对图结构的三种编码

2.1 Centrality Encoding(中心性编码)

每个节点经过中心性编码后的结果如下:
h i = x ( v i ) + z + ( d e g + v i ) + z − ( d e g − v i ) h^{i} = x(v^{i})+z^{+}(deg^{+}v^{i})+z^{-}(deg^{-}v^{i}) hi=x(vi)+z+(deg+v

### ANTLR工具功能与使用指南 ANTLR 是一款强大的语法分析器生成工具,其核心功能在于能够读取、处理并执行结构化文本或二进制文件[^2]。通过定义特定的语法规则,ANTLR 可以自动生成词法分析器(Lexer)和语法分析器(Parser),从而实现对目标语言的解析。 #### 1. ANTLR 的主要功能 ANTLR 提供的核心功能可以分为以下几个方面: - **语法定义支持** 用户可以通过 ANTLR 支持的语法格式定义自己的语言规则。这些规则会被 ANTLR 解析并转化为对应的 Java 或其他语言代码[^3]。 - **自动代码生成功能** 当用户定义好语法规则后,ANTLR 工具会根据该规则生成相应的词法分析器和语法分析器代码。这些代码可以直接嵌入到用户的程序中,用于解析符合规则的输入字符串[^3]。 - **多种目标语言支持** ANTLR 不仅限于生成 Java 代码,还支持 Python、C# 和 JavaScript 等多种主流编程语言的目标代码生成。 - **高效解析能力** ANTLR 使用 LL(*) 文法解析算法,能够在复杂场景下提供高效的解析性能。这种特性使得 ANTLR 成为了许多大型项目的首选解析工具[^2]。 --- #### 2. ANTLR 工具的使用方法 以下是关于如何安装和使用 ANTLR 工具的具体指导: ##### 安装 ANTLR 工具 1. 下载 ANTLR jar 文件:可以从官方 Maven 存储库下载最新版本的 `antlr-<version>.jar` 文件[^3]。 2. 配置环境变量:将 ANTLR jar 添加至系统的 CLASSPATH 中以便命令行调用。 ##### 创建和运行第一个 ANTLR 项目 1. 编写 Grammar 文件 创建一个 `.g4` 文件,例如 `MyGrammar.g4`,其中包含您要解析的语言规则。以下是一个简单的例子: ```antlr grammar MyGrammar; start : expression EOF; expression : NUMBER '+' NUMBER ; NUMBER : [0-9]+ ; WS : [ \t\r\n]+ -> skip ; ``` 2. 运行 ANTLR 工具生成代码 在终端中运行以下命令来生成解析器代码: ```bash java -jar antlr-<version>.jar MyGrammar.g4 -o output_directory ``` 此操作会在指定目录中生成 Lexer 和 Parser 类文件。 3. 编译生成的代码 将生成的代码与 ANTLR 运行时库一起编译。假设您的主类名为 `Main.java`,可按如下方式编译: ```bash javac -cp .:antlr-runtime-<version>.jar Main.java output_directory/*.java ``` 4. 测试解析器 编写测试代码加载生成的解析器,并传入待解析的字符串进行验证。例如: ```java import org.antlr.v4.runtime.*; import org.antlr.v4.runtime.tree.*; public class Main { public static void main(String[] args) throws Exception { String input = "3 + 4"; CharStream stream = CharStreams.fromString(input); MyGrammarLexer lexer = new MyGrammarLexer(stream); CommonTokenStream tokens = new CommonTokenStream(lexer); MyGrammarParser parser = new MyGrammarParser(tokens); ParseTree tree = parser.start(); // 开始解析入口点 System.out.println(tree.toStringTree(parser)); // 输出解析树 } } ``` --- #### 3. 常见应用场景 ANTLR 广泛应用于多个领域,包括但不限于以下几种情况: - 构建 DSL (Domain-Specific Language),如配置文件解析器或脚本引擎[^2]。 - 数据交换格式解析,比如 JSON 或 XML 处理工具开发。 - 教育用途,在计算机科学课程中教授编译原理和技术。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值