信息与通信的数学基础——第二章 解析函数

1. 解析函数的概念

1.1 复变函数的导数与微分

定义
若f(z)在 z 0 z_0 z0处可导,则极限值称为f(z)的导数
f ′ ( z ) = d w d z ∣ z = z 0 = lim ⁡ Δ z → 0 f ( z 0 + Δ z ) − f ( z ) 0 Δ z f'(z)=\frac{dw}{dz}|_{z=z_0}=\lim_{\Delta z \to 0} \frac{f(z_0+\Delta z)-f(z)_0}{\Delta z} f(z)=dzdwz=z0=Δz0limΔzf(z0+Δz)f(z)0
函数 w = f ( z ) w=f(z) w=f(z)在点 z 0 z_0 z0的微分记作:
d w = f ′ ( z ) d z dw = f'(z)dz dw=f(z)dz

1.2 解析函数

定义
如果函数f(z)在 z 0 z_0 z0点以及 z 0 z_0 z0点的领域内处处可导,则称f(z)在 z 0 z_0 z0点解析
如果f(z)在区域D内的每一点解析,则称f(z)在区域D内解析

可导与解析关系
① 点可导不能推出点解析,点解析可以推出点可导
② 区域可导等效于区域解析

奇点
若f(z)在 z 0 z_0 z0点不解析,则 z 0 z_0 z0为f(z)的奇点

性质
(1)在区域D内解析的两个函数f(z)与g(z)的和、差、乘、除在D内解析
(2)若函数g(z)在区域D内解析,函数f(z)在区域G内解析,当D内的没一点z,g(z)值都属于G,则 w = f [ g ( z ) ] w=f[g(z)] w=f[g(z)]在D内解析

1.3 柯西-黎曼方程

点可导的充要条件
函数 w = u ( x , y ) + i v ( x , y ) w=u(x,y)+iv(x,y) w=u(x,y)+iv(x,y)在点z处可导的充要条件
∂ u ∂ x = ∂ v ∂ y , ∂ u ∂ y = − ∂ v ∂ x u x ′ = v y ′ , u y ′ = − v x ′ \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y},\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \\ u_x'=v_y',u_y'=-v_x' xu=yv,yu=xvux=vy,uy=vx

区域解析的充要条件
函数 w = u ( x , y ) + i v ( x , y ) w=u(x,y)+iv(x,y) w=u(x,y)+iv(x,y) u ( x , y ) u(x,y) u(x,y) v ( x , y ) v(x,y) v(x,y)可微,且满足C-R方程
在这里插入图片描述
实部与虚部
解析函数的实部(虚部)一旦给定,则虚部(实部)只能相差一个常数

1.3.1 函数解析的参数关系[3]

分别列出实函数与虚函数,根据C-R方程求解对应参数的大小关系
在这里插入图片描述

2. 解析函数与调和函数的关系

2.1 调和函数

定义
若函数 f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x,y)+iv(x,y) f(z)=u(x,y)+iv(x,y)在区域D内解析,则u(x,y)和v(x,y)在区域D内都是调和函数
∂ 2 u ∂ 2 x + ∂ 2 u ∂ 2 y = ∂ 2 v ∂ x ∂ y − ∂ 2 v ∂ x ∂ y = 0 ∂ 2 v ∂ 2 x + ∂ 2 v ∂ 2 y = ∂ 2 u ∂ x ∂ y − ∂ 2 u ∂ x ∂ y = 0 \frac{\partial^2 u}{\partial^2 x}+\frac{\partial^2 u}{\partial^2 y} = \frac{\partial^2 v}{\partial x \partial y} - \frac{\partial^2 v}{\partial x \partial y} =0 \\ \frac{\partial^2 v}{\partial^2 x}+\frac{\partial^2 v}{\partial^2 y} = \frac{\partial^2 u}{\partial x \partial y} - \frac{\partial^2 u}{\partial x \partial y} =0 2x2u+2y2u=xy2vxy2v=02x2v+2y2v=xy2uxy2u=0

2.2 共轭调和函数

定义
若u(x,y), v(x,y)均为D上的调和函数,且满足C-R方程,则v是u的共轭调和函数

定理
f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x,y)+iv(x,y) f(z)=u(x,y)+iv(x,y)在区域D内解析的充要条件:区域D内,v是u的共轭调和函数

注意
v是u的共轭调和函数 不等于 u是v的共轭调和函数
理解:u(x,y)+iv(x,y)解析不代表v(x,y)+iu(x,y)在区域D内解析

2.2.1 求以调和函数u为实部的解析函数[4]

f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x,y)+iv(x,y) f(z)=u(x,y)+iv(x,y)在D内解析,则v(x,y)是u(x,y)的共轭调和函数。根据C-R方程,确定v(x,y)并根据确定函数值求解f(z)
u x ′ = v y ′ , u y ′ = − v x ′ u_x'=v_y',u_y'=-v_x' ux=vy,uy=vx
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
注意:
积分时0项的变换。
(1)对v(x,y)积分时
对dy积分,则0项将变换为 ϕ ( x ) \phi(x) ϕ(x),对dx积分,0项将变换为 ϕ ( y ) \phi(y) ϕ(y)
(v(x,y)是由变量x,y共同决定)
(2)对 ϕ ( x ) \phi(x) ϕ(x)积分时
0项变换为常数C( ϕ ( x ) \phi(x) ϕ(x)仅有x变量决定,与y变量无关)

3. 初等函数

3.1 指数函数

定义
w = e z = e x + i y = e x ⋅ e i y w = e^z=e^{x+iy}=e^x \cdot e^{iy} w=ez=ex+iy=exeiy
映射关系
指数函数w可以理解为,模长为 e x e^x ex,辐角为y的复变函数
∣ w ∣ = e x A r g w = y |w| = e^x \\ Argw = y w=exArgw=y
对于(x,y)可以映射到模长为 e x e^x ex,辐角为y的向量
在这里插入图片描述
性质
(1) e z e^z ez是单值函数
(2) e z e^z ez是以 2 k π i 2k\pi i 2kπi为周期的周期函数
(3) e z e^z ez在复平面上处处解析

常见复数的指数形式
在这里插入图片描述

3.2 对数函数

定义
z = r e i θ , w = u + i v z=re^{i\theta}, w=u+iv z=reiθ,w=u+iv
w = L n z = l n r + i θ = l n r + i ( a r g z + 2 k π ) { u = l n r v = θ = A r g z w = Lnz = lnr + i\theta = lnr + i(argz + 2k\pi) \\ \begin{cases} u = lnr \\ v = \theta = Argz \end{cases} w=Lnz=lnr+iθ=lnr+i(argz+2kπ){u=lnrv=θ=Argz
由z模的对数得到实部u,z的辐角得到虚部v

性质
(1)对数函数为多值函数
w = L n z = l n r + i ( a r g z + 2 k π ) w = Lnz = lnr + i(argz + 2k\pi) w=Lnz=lnr+i(argz+2kπ)
主枝: L n z = l n z + 2 k π i = l n r + i ( a r g z + 2 k π ) Lnz=lnz+2k\pi i= lnr + i(argz + 2k\pi) Lnz=lnz+2kπi=lnr+i(argz+2kπ)
分支:对于某一固定的k,lnz+2k\pi i
(2) w = L n z w = Lnz w=Lnz在原点无定义,定义域为 z ≠ 0 z \neq 0 z=0
(3)Lnz在原点及负实轴不连续
在这里插入图片描述
(4)Lnz在除去原点及负实轴的复平面解析
在这里插入图片描述
对于常见的复数,可以根据坐标系位置直接确定主辐角大小

3.3 幂函数

定义
w = z α = e α l n z = r α e i α θ w=z^{\alpha}=e^{\alpha lnz}=r^{\alpha}e^{i\alpha \theta} w=zα=eαlnz=rαeiαθ
在这里插入图片描述

3.4 三角函数

c o s z = e i z + e − i z 2 s i n z = e i z − e − i z 2 i cosz = \frac{e^{iz}+e^{-iz}}{2} \\ sinz = \frac{e^{iz}-e^{-iz}}{2i} cosz=2eiz+eizsinz=2ieizeiz
在这里插入图片描述

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冠long馨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值