复变函数论2-解析函数3-初等多值函数3-对数函数4:分出w=Lnz的单值解析分支

本文深入分析了复变函数中对数函数w=Lnz的单值解析分支,特别是在割除负实轴区域G内的不同分支表达式(2.26),并讨论了函数在不同条件下的解析性质及其支点和支割线情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Ⅳ、分出 w = Ln ⁡ z w=\operatorname{Ln} z w=Lnz 的单值解析分支.

在这里插入图片描述

参照图 2.12 作类似于对函数 w = z n w=\sqrt[n]{z} w=nz 的讨论.

z z z 平面上从原点 z = 0 z=0 z=0 起割破负实轴的区域 G G G 内, 可以得到 w = Ln ⁡ z w=\operatorname{Ln} z w=Lnz的无穷多个不同的单值连续分支函数

w k = ( ln ⁡ z ) k = ln ⁡ r ( z ) + i [ θ ( z ) + 2 k π ] ( z ∈ G , k = 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值