强化学习算法(四)——深度确定性策略DDPG

本文介绍了离散动作与连续动作的区别,并重点讲解了DDPG算法,它是DQN的扩展,适用于连续动作空间。DDPG采用演员-评论员结构,策略网络(演员)输出动作,Q网络(评论员)评估其价值。通过稳定Q目标和引入动作噪音来优化学习过程,后续还提到了改进算法TD3和SAC。
摘要由CSDN通过智能技术生成

1. 离散动作与连续动作的区别

(1)离散动作与连续动作

  • 离散动作:动作空间有限。
  • 连续动作:连续动作空间。

对于连续的动作空间,Q学习、DQN等算法没有办法处理。

(2)随机性策略和确定性策略

  • 随机性策略:输入某一个状态s,采取某一个动作的可能型不是百分百。
    ①一般的,在网络最后加上softmax层确保输出是动作概率。
  • 决定性策略:输入某个状态s,会选择相同的动作。
    ②一般可以在输出层加一层tanh,把输出限制到[-1,1]之间。将所得值再进行扩放变化。

在这里插入图片描述

2. DDPG

DDPG是DQN与确定性策略的结合。

  • DDPG是DQN的扩展版本,可以扩展到连续动作空间。
  • DDPG在DQN基础上加了一个策略网络来直接输出动作值,再使用Q网络评估动作价值。
  • Q网络参数用w表示,策略网络参数用 θ \theta θ表示。

(1)演员-评论员结构

  • 策略网络担任演员,负责输出动作
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冠long馨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值