梳理确定性策略梯度,随机策略梯度,AC,DPG,DDPG之间的联系

1、随机策略

1.1  随机策略公式为:

\[ \pi_{\theta}\left(a|s\right)=P\left[a|s;\theta\right] \]

这里的P是一个概率函数,就是说,在给定状态和参数的情况下,输出的的动作服从一个概率分布,也就意味着每次走进这个状态的时候,输出的动作可能不同。

1.2  随机策略梯度公式为:

 

\[ \nabla_{\theta}J\left(\pi_{\theta}\right)=E_{s\sim\rho^{\pi},a\sim\pi_{\theta}}\left[\nabla_{\theta}\log\pi_{\theta}\left(a|s\right)Q^{\pi}\left(s,a\right)\right] \]

表明,策略梯度公式是关于状态和动作的期望,在求期望时,需要对状态分布和动作分布进行求积分。这就要求在状态空间和动作空间采集大量的样本,这样求均值才能近似期望。

2、确定性策略

2.1  确定策略公式为:

  • 9
    点赞
  • 49
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
深度确定性策略梯度算法(Deep Deterministic Policy Gradient,简称 DDPG)是一种用于连续动作空间的强化学习算法。DDPG是基于确定性策略梯度算法(Deterministic Policy Gradient,简称 DPG)的改进,同时利用了深度神经网络来近似值函数和策略函数。 在DDPG中,策略函数和值函数都是用深度神经网络来表示。相比于传统的强化学习算法,DDPG在处理高维连续动作空间中的问题时更加有效。 DDPG算法主要包含两个部分:Actor和Critic。Actor的作用是输出动作,Critic的作用是评估动作的价值。Actor和Critic在训练过程中相互协作,通过策略梯度和价值函数梯度来更新模型参数。 具体来说,DDPG算法的训练过程包括以下几个步骤: 1. 首先,使用Actor来选择动作,并将动作作为输入传递给环境。环境返回奖励和下一个状态。 2. 使用Critic来评估当前状态下采取该动作的价值,并计算出TD误差。 3. 使用TD误差来更新Critic的参数,以使其能够更准确地评估当前状态下的价值。 4. 使用Critic的输出和当前状态来计算Actor的策略梯度,并使用梯度下降法来更新Actor的参数,以使其生成更好的动作。 5. 重复1-4步,直到达到预定的训练次数或者训练误差满足要求。 总之,DDPG算法是一种基于策略梯度和值函数梯度的连续动作空间强化学习算法,它利用深度神经网络来近似值函数和策略函数,从而解决了高维连续动作空间问题。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值