分组背包问题

有 N 组物品和一个容量是 V 的背包。每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 v i j v_{ij} vij,价值是 w i j w_{ij} wij,其中 i i i 是组号, j j j 是组内编号。
求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。出最大价值。

题目很清晰,就是01背包的变种,就是将物品分组,每组中只能选一个。这样一来,参考01背包的模板,事情就变得异常简单,不过就是再套一层循环。

#include <iostream>
#include <cstring>
#include <algorithm>
#define MAX 1010
using namespace std;
int f[MAX];
int v[MAX], w[MAX];
int N, V;

int main()
{
	cin >> N >> V;
	for (int i = 0; i < N; i++)
	{
		int s; cin >> s;
		for (int j = 0; j < s; j++)
			cin >> v[j] >> w[j];
		for (int j = V; j >= 0; j--)
			for (int k = 0; k < s; k++)
				if(j>=v[k])
				f[j] = max(f[j], f[j - v[k]] + w[k]);
	}
	cout << f[V] << endl;
	return 0;
}

至于简化。。。自行解决 (就是还没有做出来)
二进制优化法好像不太好用。。。。。

又水了一篇,嘻嘻。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值