有 N 组物品和一个容量是 V 的背包。每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是
v
i
j
v_{ij}
vij,价值是
w
i
j
w_{ij}
wij,其中
i
i
i 是组号,
j
j
j 是组内编号。
求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。出最大价值。
题目很清晰,就是01背包的变种,就是将物品分组,每组中只能选一个。这样一来,参考01背包的模板,事情就变得异常简单,不过就是再套一层循环。
#include <iostream>
#include <cstring>
#include <algorithm>
#define MAX 1010
using namespace std;
int f[MAX];
int v[MAX], w[MAX];
int N, V;
int main()
{
cin >> N >> V;
for (int i = 0; i < N; i++)
{
int s; cin >> s;
for (int j = 0; j < s; j++)
cin >> v[j] >> w[j];
for (int j = V; j >= 0; j--)
for (int k = 0; k < s; k++)
if(j>=v[k])
f[j] = max(f[j], f[j - v[k]] + w[k]);
}
cout << f[V] << endl;
return 0;
}
至于简化。。。自行解决 (就是还没有做出来)
二进制优化法好像不太好用。。。。。
又水了一篇,嘻嘻。。。