MobileNet 进化史: 从 V1 到 V3(V1篇)

本文详细介绍了MobileNet V1的设计理念,包括深度可分卷积的原理,如何通过缩放因子进一步减小模型规模,以及在网络结构中避免使用pooling的方法。MobileNet V1在保持良好性能的同时,显著降低了计算量和参数数量,适合移动端和嵌入式系统应用。
摘要由CSDN通过智能技术生成

MobileNet 进化史: 从 V1 到 V3(V1篇)

这部分内容总共由如下 3 篇文章构成。

1. 前言

MobileNet V1 是 Andrew G. Howard(Google Inc.) 等人于 2017 年(其实是 2016 年先于 Xception 已经提出,但是直到 2017 年才挂到 arXiv 上)在 MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications
中提出的一种网络结构,这种网络结构的特点是模型小,计算速度快,适合部署到移动端或者嵌入式系统中。

MobileNet V1 的关键是用深度可分卷积(depthwise separable convolutions) 替代了传统的卷积操作。其实这里隐含了一个问题是为什么这样可以使参数变少,计算量减小?原因很简单,因为卷积操作在模型中占了绝大多数的存储和计算资源。

上面是 AlexNet 中各个 layer 所占用的计算资源的情况,从图中可以非常清楚的看出卷积操作是占大头的,所以优化卷积操作是可以起到立竿见影的效果的。

2. 深度可分卷积

对于传统的卷积操作,比如如下的卷及操作,假设:

  • 操作前 feature size 为 H D ∗ W D ∗ M H_D * W_D * M HDWDM
  • 卷积核的 size 为 H K ∗ W K ∗ M ∗ N H_K * W_K * M * N HKWKMN
  • 卷积后 feature size 为 H A ∗ W A ∗ N H_A * W_A * N HAWAN

其中 H A = H D − H K + 2 ∗ P a d d i n g s t r i d e + 1 H_A = \frac{H_D - H_K + 2 * Padding}{stride} + 1 HA=strideHDHK+2Pa

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值