目录
一. 背景
MobileNet v1是由google团队在2017年提出的, 专注于移动端或者嵌入式设备中的轻量级CNN网络。 相比传统卷积神经网络,在准确率小幅降低的前提下大大减少模型参数与运算量。相比VGG16准确率减少了0.9%,但模型参数只有VGG的1/32。
论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
MobileNet v2是由google团队在2018年提出的。
论文地址:MobileNetV2: Inverted Residuals and Linear Bottlenecks
MobileNet v3是由google团队在2019年提出的。
论文地址:Searching for MobileNetV3
二. MobileNet v1
1. 网络创新点
- Depthwise Coinvolution,大大减少运算量和参数数量
- 增加超参数α、β,便于调节网络模型
1.1. Depthwise Coinvolution
基本思想:将标准卷积拆分为两个分卷积,构成深度可分离卷积(Depthwise Separable Convolution):第一层称为深度卷积(depthwise convolution),对每个输入通道应用单通道的轻量级滤波器;第二层称为逐点卷积(pointwise convolution),负责计算输入通道的线性组合构建新的特征。
传统卷积:
- 卷积核通道数 = 输入特征图通道数
- 输出特征图通道数 = 卷积核个数
DW卷积(Depthwise Coinvolution):
- 卷积核通道数 = 1
- 输入特征图通道数 = 卷积核个数 = 输出特征图通道数
PW卷积(Pointwise Convolution):
- 与普通卷积一样,但是卷积核大小为1
深度可分离卷积(Depthwise Separab