MobileNet v1&v2&v3 创新点及结构简述

目录

一. 背景

二. MobileNet v1

1. 网络创新点

2. 网络结构

三. MobileNet v2

1. 网络创新点

2. 网络结构

四. MobileNet v3

1. 网络创新点

2. 网络结构

参考


一. 背景

MobileNet v1是由google团队在2017年提出的, 专注于移动端或者嵌入式设备中的轻量级CNN网络。 相比传统卷积神经网络,在准确率小幅降低的前提下大大减少模型参数与运算量。相比VGG16准确率减少了0.9%,但模型参数只有VGG的1/32。

论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

MobileNet v2是由google团队在2018年提出的。

论文地址:MobileNetV2: Inverted Residuals and Linear Bottlenecks

MobileNet v3是由google团队在2019年提出的。

论文地址:Searching for MobileNetV3

二. MobileNet v1

1. 网络创新点

  • Depthwise Coinvolution,大大减少运算量和参数数量
  • 增加超参数α、β,便于调节网络模型

1.1. Depthwise Coinvolution

基本思想:将标准卷积拆分为两个分卷积,构成深度可分离卷积(Depthwise Separable Convolution):第一层称为深度卷积(depthwise convolution),对每个输入通道应用单通道的轻量级滤波器;第二层称为逐点卷积(pointwise convolution),负责计算输入通道的线性组合构建新的特征。

传统卷积:

  • 卷积核通道数 = 输入特征图通道数
  • 输出特征图通道数 = 卷积核个数

​​​​​​DW卷积(Depthwise Coinvolution):  

  • 卷积核通道数 = 1
  • 输入特征图通道数 = 卷积核个数 = 输出特征图通道数

PW卷积(Pointwise Convolution):

  • 与普通卷积一样,但是卷积核大小为1

深度可分离卷积(Depthwise Separab

MobileNet是一种轻量级的卷积神经网络,主要用于在移动设备和嵌入式系统上进行实时图像分类和对象检测。MobileNet系列共有三个版本,分别为MobileNet v1MobileNet v2MobileNet v3,下面简述一下它们的特和区别: 1. MobileNet v1MobileNet v1是第一个版本的MobileNet,它采用了深度可分离卷积(Depthwise Separable Convolution)的结构,将标准卷积拆分为深度卷积和逐卷积两个步骤,从而大大减少了参数量和计算量。MobileNet v1在ImageNet数据集上取得了不错的分类精度和较快的推理速度,但是仍然存在一些性能瓶颈,如计算效率和模型精度之间的平衡。 2. MobileNet v2MobileNet v2MobileNet系列的第二个版本,它在MobileNet v1的基础上进行了改进,引入了Inverted Residual Block和Linear Bottleneck结构。Inverted Residual Block是一种新的残差块,它通过将扩张卷积和逐卷积结合起来,提高了网络的非线性表达能力;Linear Bottleneck则是一种线性瓶颈结构,可以有效地降低模型的计算量。MobileNet v2在保持模型轻量化的同时,进一步提升了模型的精度和计算效率。 3. MobileNet v3MobileNet v3MobileNet系列的最新版本,主要在两个方面进行了改进,即网络结构和训练策略。MobileNet v3引入了多种新的操作,如Squeeze-and-Excitation模块、Hard-swish激活函数和可分离卷积等,从而进一步提高了网络的精度和计算效率。此外,MobileNet v3还采用了自适应计算时间的训练策略,可以根据不同的硬件环境自动调整网络的计算量,从而适应不同的应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

华科附小第一名

您的支持对我的前行很重要!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值