On the Properties of Neural Machine Translation: Encoder–DecoderApproaches

文章探讨了神经机器翻译模型,特别是RNNEncoder-Decoder和门控递归卷积神经网络在处理变长序列中的应用。研究指出,固定长度的向量表示对于复杂的长句子编码可能不足。实验部分关注英语到法语的翻译任务,使用AdaDelta优化的RNN解码器,并通过BLEU得分评估性能。研究强调理解这些模型的行为以指导未来的研究方向和改进翻译系统的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

Neural machine translation : 神经机器翻译

神经机器翻译模型经常包含编码器和解码器:an encoder and a decoder.

编码器: 从一个变长输入序列中提取固定长度的表示。a fixed-length representation.

解码器:从表示中生成一个正确的翻译。generates a correct translation

本文使用模型: RNN Encoder–Decoder、

     a newly proposed gated recursive convolutional neural network (门递归卷积神经网络)

 a grammatical structure 语法结构

介绍

问题:

it is crucial to understand the properties and behavior of this new neural machine translation approach in order to determine future research directions. Also, understanding the weaknesses and strengths of neural machine translation might lead to better ways of integrating SMT and neural machine translation systems

变长序列神经网络:

循环神经网络、门递归卷积神经网咯

RNN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

big_matster

您的鼓励,是给予我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值