Keras:基于Python的深度学习库

这就是Keras

Keras是一个高层神经网络API,Keras由纯Python编写而成并基TensorflowTheano以及CNTK后端。Keras 为支持快速实验而生,能够把你的idea迅速转换为结果,如果你有如下需求,请选择Keras:

  • 简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性)
  • 支持CNN和RNN,或二者的结合
  • 无缝CPU和GPU切换

Keras适用的Python版本是:Python 2.7-3.5

Keras的设计原则是

  • 用户友好:Keras是为人类而不是天顶星人设计的API。用户的使用体验始终是我们考虑的首要和中心内容。Keras遵循减少认知困难的最佳实践:Keras提供一致而简洁的API, 能够极大减少一般应用下用户的工作量,同时,Keras提供清晰和具有实践意义的bug反馈。

  • 模块性:模型可理解为一个层的序列或数据的运算图,完全可配置的模块可以用最少的代价自由组合在一起。具体而言,网络层、损失函数、优化器、初始化策略、激活函数、正则化方法都是独立的模块,你可以使用它们来构建自己的模型。

  • 易扩展性:添加新模块超级容易,只需要仿照现有的模块编写新的类或函数即可。创建新模块的便利性使得Keras更适合于先进的研究工作。

  • 与Python协作:Keras没有单独的模型配置文件类型(作为对比,caffe有),模型由python代码描述,使其更紧凑和更易debug,并提供了扩展的便利性。


关于Keras-cn

本文档是Keras文档的中文版,包括keras.io的全部内容,以及更多的例子、解释和建议

现在,keras-cn的版本号将简单的跟随最新的keras release版本

由于作者水平和研究方向所限,无法对所有模块都非常精通,因此文档中不可避免的会出现各种错误、疏漏和不足之处。如果您在使用过程中有任何意见、建议和疑问,欢迎发送邮件到moyan_work@foxmail.com与我取得联系。

您对文档的任何贡献,包括文档的翻译、查缺补漏、概念解释、发现和修改问题、贡献示例程序等,均会被记录在致谢,十分感谢您对Keras中文文档的贡献!

如果你发现本文档缺失了官方文档的部分内容,请积极联系我补充。

本文档相对于原文档有更多的使用指导和概念澄清,请在使用时关注文档中的Tips,特别的,本文档的额外模块还有:

  • Keras新手指南:我们新提供了“Keras新手指南”的页面,在这里我们对Keras进行了感性介绍,并简单介绍了Keras配置方法、一些小知识与使用陷阱,新手在使用前应该先阅读本部分的文档。

  • Keras资源:在这个页面,我们罗列一些Keras可用的资源,本页面会不定期更新,请注意关注

  • 深度学习与Keras:位于导航栏最下方的该模块翻译了来自Keras作者博客keras.io 和其他Keras相关博客的文章,该栏目的文章提供了对深度学习的理解和大量使用Keras的例子,您也可以向这个栏目投稿。 所有的文章均在醒目位置标志标明来源与作者,本文档对该栏目文章的原文不具有任何处置权。如您仍觉不妥,请联系本人(moyan_work@foxmail.com)删除。


当前版本与更新

如果你发现本文档提供的信息有误,有两种可能:

  • 你的Keras版本过低:记住Keras是一个发展迅速的深度学习框架,请保持你的Keras与官方最新的release版本相符

  • 我们的中文文档没有及时更新:如果是这种情况,请发邮件给我,我会尽快更新

目前文档的版本号是2.0.8,对应于官方的2.0.8 release 版本, 本次更新的主要内容是……等等,应该是这么长时间都没更新后从2.0.4-2.0.8的内容

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/kwame211/article/details/78249327
个人分类: 深度学习
上一篇Eigen: C++开源矩阵计算工具——Eigen的简单用法
下一篇谷歌开源图像分类工具TF-Slim,定义TensorFlow复杂模型
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭