yolov8实时推理目标识别、区域分割、姿态识别 Qt GUI

该博客介绍了使用Qt GUI开发的一个实时目标检测工具,该工具基于YOLOv8模型,支持目标检测、姿态识别、区域分割和跟踪功能。模型输入可接受yolov8的不同尺寸,跟踪器包括deepsort和bytetrack。用户可以选择本地图片、视频或RTSP视频流作为输入,并能调整置信度、IOU和帧间隔参数。该应用适用于Python 3.7到3.11版本,可在Ubuntu和Windows系统上运行。项目源代码可在GitHub找到。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

介绍一个GUI工具,可以实时做yolov8模型推理,包括目标检测、姿态识别、跟踪、区域分割等操作。

可以接入图像、视频或者RTSP视频流进行验证。

推理模型用的是yolov8转onnx之后的。用ultralytics自带的转换即可,不用带NMS。

框架用的是Qt

任务可以分为:

目标识别、区域分割、姿态识别。

模型输入支持yolov8 n,s,m,l,x。

跟踪器支持deepsort和bytetrack两种。

输入方式支持本地图片、视频和RTSP视频流。

下面还提供了置信度、IOU、帧间隔的设置。

结果呈现上除了图上的框和类别标注,还有每个目标的置信度、BBox坐标。

需要的环境推荐用python3.7以上,python3.11以下。

Ubuntu,Windows系统都可以支持。

项目链接贴到下面,需要请自取。

https://github.com/MarkusHuang/YOLOv8-DeepSort-PyQt-GUI

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tofu Intelligence

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值