泛函分析笔记(九)Banach 空间中的级数

1. Banach 空间的级数

如果 ( X , ∣ ∣ ⋅ ∣ ∣ ) (X,||\cdot||) (X,) 是赋范向量空间, ( x n ) n = 1 ∞ (x_n)_{n=1}^\infty (xn)n=1 是向量 x n ∈ X x_n\in X xnX 的序列,则 ∑ n = 1 ∞ x n \sum_{n=1}^\infty x_n n=1xn 是一个级数,对每个整数 k ≥ 1 k\ge 1 k1 s k : = ∑ n = 1 k x n s_k:=\sum_{n=1}^k x_n sk:=n=1kxn 是级数的前k项部分和。如果序列 ( s k ) k = 1 ∞ (s_k)_{k=1}^\infty (sk)k=1 在X中收敛,则称级数 ∑ n = 1 ∞ x n \sum_{n=1}^\infty x_n n=1xn 为收敛的,有 ∑ n = 1 ∞ x n = s \sum_{n=1}^\infty x_n = s n=1xn=s
s为级数的和。

emmm似乎和高数里面的级数没什么区别

收敛性: 如果级数满足 ∑ n = 1 ∞ ∣ ∣ x n ∣ ∣ < ∞ \sum_{n=1}^\infty ||x_n|| <\infty n=1xn< ,则级数收敛,其和满足 ∣ ∣ ∑ n = 1 ∞ x n ∣ ∣ ≤ ∑ n = 1 ∞ ∣ ∣ x n ∣ ∣ ||\sum_{n=1}^\infty x_n||\le \sum_{n=1}^\infty ||x_n|| n=1xnn=1xn

1.1. Neumann级数 ∑ n = 0 ∞ A n \sum_{n=0}^\infty A_n n=0An

  • 如果 ( X , ∣ ∣ ⋅ ∣ ∣ ) (X,||\cdot||) (X,) 是Banach空间, A ∈ L ( X ) A\in \mathcal L(X) AL(X) (这里A是一个线性算子) 满足 ∣ ∣ A ∣ ∣ < 1 ||A||<1 A<1
  1. 连续线性算子 ( I − A ) : X → X (I-A):X\to X (IA):XX 是双射,其逆 ( I − A ) − 1 : X → X (I-A)^{-1}:X\to X (IA)1:XX也是连续线性算子
  2. ( I − A ) − 1 = ∑ n = 0 ∞ A n    a n d    ∣ ∣ ( I − A ) − 1 ∣ ∣ ≤ 1 1 − ∣ ∣ A ∣ ∣ (I-A)^{-1}= \sum_{n=0}^\infty A^n ~~ and ~~ ||(I-A)^{-1}||\le\frac{1}{1-||A||} (IA)1=n=0An  and  (IA)11A1

简单的证明
∣ ∣ A ∣ ∣ < 1 ||A||<1 A<1 有 $\sum_{n=0}^\infty ||A^n|| \le \sum_{n=0}^\infty ||A||^n <\infty $ (中间这一步可以由柯西不等式出来 ∣ ∣ A 2 ∣ ∣ ≤ ∣ ∣ A ∣ ∣ ⋅ ∣ ∣ A ∣ ∣ ||A^2|| \le ||A||\cdot||A|| A2AA

(补充一个定理:如果X为赋范向量空间,Y是Banach空间,则 ( L ( X ; Y ) , ∣ ∣ ⋅ ∣ ∣ L ( X ; Y ) ) (\mathcal{L}(X;Y),||\cdot||_{\mathcal{L}(X;Y)}) (L(X;Y),L(X;Y)) 是Banach空间,这里应该有证明但是我懒得写了写不下了 )

又有刚才的级数收敛性,可以知道这个级数是收敛的。 B ∈ L ( X ) B \in \mathcal{L} (X) BL(X) 为级数和,即 B = ∑ n = 0 ∞ A n : = lim ⁡ k → ∞ B k ,    B k : = ∑ n = 0 k A n B = \sum_{n=0}^\infty A^n := \lim_{k \to \infty} B_k, ~~ B_k:=\sum_{n=0}^k A^n B=n=0An:=limkBk,  Bk:=n=0kAn

(B是线性算子的乘积嘛,所有还是线性算子, L ( X ) \mathcal L (X) L(X) 是线性算子的集合,肯定包含了B嘛)

再给它分别左乘和右乘A,有

A B = lim ⁡ k → ∞ A B k = lim ⁡ k → ∞ ( B k + 1 − I ) = B − I AB = \lim_{k\to\infty} AB_k = \lim_{k\to \infty} (B_{k+1} - I) = B-I AB=limkABk=limk(Bk+1I)=BI

B A = lim ⁡ k → ∞ B k A = lim ⁡ k → ∞ ( B k + 1 − I ) = B − I BA = \lim_{k\to\infty} B_kA = \lim_{k\to \infty} (B_{k+1} - I) = B-I BA=limkBkA=limk(Bk+1I)=BI

联立有

I = B ( I − A ) = ( I − A ) B I=B(I-A) = (I-A)B I=B(IA)=(IA)B

由于 ( I − A ) ∈ L ( X ) (I-A)\in \mathcal{L}(X) (IA)L(X) 既有左逆又有右逆,所有是双射。

1的双射证明完成,开始搞2

( I − A ) − 1 = B = ∑ n = 0 ∞ A n (I-A)^{-1} = B =\sum_{n=0}^\infty A^n (IA)1=B=n=0An

有展开式 1 1 − z = ∑ n = 0 ∞ z n \frac{1}{1-z} = \sum_{n=0}^\infty z^n 1z1=n=0zn ,所以

∣ ∣ ( I − A ) − 1 ∣ ∣ ≤ ∑ n = 0 ∞ ∣ ∣ A n ∣ ∣ ≤ ∑ n = 0 ∞ ∣ ∣ A ∣ ∣ n = 1 1 − ∣ ∣ A ∣ ∣ ||(I-A)^{-1}||\le \sum_{n=0}^\infty ||A^n||\le\sum_{n=0}^\infty ||A||^n = \frac{1}{1-||A||} (IA)1n=0Ann=0An=1A1

1.2. 相关定理

  1. 如果X是Banach空间,Y是赋范向量空间,则集合

U : = { A ∈ L ( X ; Y ) ; A : X → Y 是 双 射 , 且 A − 1 ∈ L ( Y ; X ) } \mathcal{U}:= \{A\in\mathcal{L}(X;Y);A:X\to Y 是双射,且 A^{-1}\in \mathcal{L}(Y;X)\} U:={AL(X;Y);A:XYA1L(Y;X)}

是赋范向量空间 ( L ( X ; Y ) , ∣ ∣ ⋅ ∣ ∣ L ( X ; Y ) ) (\mathcal{L}(X;Y),||\cdot||_{\mathcal{L}(X;Y)}) (L(X;Y),L(X;Y)) 中的开集

又设 A ∈ U A\in\mathcal{U} AU ,如果 ∣ ∣ B − A ∣ ∣ < 1 ∣ ∣ A − 1 ∣ ∣ ||B-A||<\frac{1}{||A^{-1}||} BA<A11 B ∈ U B\in \mathcal{U} BU ,此时
∣ ∣ B − 1 ∣ ∣ ≤ ∣ ∣ A − 1 ∣ ∣ 1 − ∣ ∣ A − 1 ( B − A ) ∣ ∣ ≤ ∣ ∣ A − 1 ∣ ∣ 1 − ∣ ∣ A − 1 ∣ ∣ ∣ ∣ B − A ∣ ∣ ||B^{-1}||\le\frac{||A^{-1}||}{1-||A^{-1}(B-A)||}\le\frac{||A^{-1}||}{1-||A^{-1}||||B-A||} B11A1(BA)A11A1BAA1

∣ ∣ B − 1 − A − 1 ∣ ∣ ≤ ∣ ∣ A − 1 ∣ ∣ 2 ∣ ∣ B − A ∣ ∣ 1 − ∣ ∣ A − 1 ( B − A ) ∣ ∣ ≤ ∣ ∣ A − 1 ∣ ∣ 2 ∣ ∣ B − A ∣ ∣ 1 − ∣ ∣ A − 1 ∣ ∣ ∣ ∣ B − A ∣ ∣ ||B^{-1}-A^{-1}||\le\frac{||A^{-1}||^2||B-A||}{1-||A^{-1}(B-A)||}\le\frac{||A^{-1}||^2||B-A||}{1-||A^{-1}||||B-A||} B1A11A1(BA)A12BA1A1BAA12BA
因而 A ∈ U → A − 1 ∈ U A\in\mathcal{U}\to A^{-1}\in \mathcal{U} AUA1U 是连续的

  • 简单的证明
    A ∈ U A\in\mathcal{U} AU L ( X ) \mathcal{L}(X) L(X) 是Banach空间 (因为X是Banach空间嘛,前面提到有定理。) ,如果有
    ∣ ∣ B − A ∣ ∣ < 1 ∣ ∣ A − 1 ∣ ∣ ||B-A||<\frac{1}{||A^{-1}||} BA<A11
    则有 ∣ ∣ A − 1 ( B − A ) ∣ ∣ ≤ ∣ ∣ A − 1 ∣ ∣    ∣ ∣ B − A ∣ ∣ < 1 ||A^{-1}(B-A)||\le ||A^{-1}||~~||B-A|| < 1 A1(BA)A1  BA<1 ,前面证明了如果 ∣ ∣ A ∣ ∣ < 1 ||A||<1 A<1 连续线性算子 ( I − A ) : X → X (I-A):X\to X (IA):XX 是双射,这里把A 换成 − A − 1 ( B − A ) -A^{-1}(B-A) A1(BA) ,可知 ( I + A − 1 ( B − A ) ) (I+A^{-1}(B-A)) (I+A1(BA)) 是双射,有双射
    B = A + B − A = A ( I + A − 1 ( B − A ) ) B = A + B - A = A(I+A^{-1}(B-A)) B=A+BA=A(I+A1(BA))
    B − 1 = ( I + A − 1 ( B − A ) ) − 1 A − 1 B^{-1} = (I+A^{-1}(B-A))^{-1}A^{-1} B1=(I+A1(BA))1A1
    B也是有连续逆的双射 , B ∈ L ( X ; Y ) B\in \mathcal{L}(X;Y) BL(X;Y)
    还是用前面证明的不等式 ∣ ∣ ( I − A ) − 1 ∣ ∣ ≤ 1 1 − ∣ ∣ A ∣ ∣ ||(I-A)^{-1}||\le\frac{1}{1-||A||} (IA)11A1,有
    ∣ ∣ B − 1 ∣ ∣ ≤ ∣ ∣ ( I + A − 1 ( B − A ) ) − 1 ∣ ∣    ∣ ∣ A − 1 ∣ ∣ ≤ ∣ ∣ A − 1 ∣ ∣ 1 − ∣ ∣ A − 1 ( B − A ) ∣ ∣ ≤ ∣ ∣ A − 1 ∣ ∣ 1 − ∣ ∣ A − 1 ∣ ∣    ∣ ∣ ( B − A ) ∣ ∣ ||B^{-1}||\le ||(I+A^{-1}(B-A))^{-1}|| ~~||A^{-1}||\le \frac{||A^{-1}||}{1-||A^{-1}(B-A)||} \le \frac{||A^{-1}||}{1-||A^{-1}||~~||(B-A)||} B1(I+A1(BA))1  A11A1(BA)A11A1  (BA)A1
    如果 ∣ ∣ B − A ∣ ∣ < 1 ∣ ∣ A − 1 ∣ ∣ ||B-A||<\frac{1}{||A^{-1}||} BA<A11 B − 1 − A − 1 = B − 1 ( A − B ) A − 1 B^{-1} - A^{-1} = B^{-1}(A-B)A^{-1} B1A1=B1(AB)A1
    所以
    ∣ ∣ B − 1 − A − 1 ∣ ∣ ≤ ∣ ∣ B − 1 ( A − B ) A − 1 ∣ ∣ ≤ ∣ ∣ A − 1 ∣ ∣ 2 ∣ ∣ B − A ∣ ∣ 1 − ∣ ∣ A − 1 ( B − A ) ∣ ∣ ≤ ∣ ∣ A − 1 ∣ ∣ 2 ∣ ∣ B − A ∣ ∣ 1 − ∣ ∣ A − 1 ∣ ∣ ∣ ∣ B − A ∣ ∣ ||B^{-1} - A^{-1}||\le||B^{-1}(A-B)A^{-1}||\le\frac{||A^{-1}||^2||B-A||}{1-||A^{-1}(B-A)||}\le\frac{||A^{-1}||^2||B-A||}{1-||A^{-1}||||B-A||} B1A1B1(AB)A11A1(BA)A12BA1A1BAA12BA
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

豆沙粽子好吃嘛!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值