变分问题存在唯一性和对应边值问题的导出

梯度和格林公式

φ ( x , y , z ) \varphi(x,y,z) φ(x,y,z) 是数量函数,那么有 ∇ ⋅ ∇ φ = ( ∂ ∂ x , ∂ ∂ y , ∂ ∂ z ) ⋅ ( ∂ φ ∂ x , ∂ φ ∂ y , ∂ φ ∂ z ) = ∂ 2 φ ∂ x 2 + ∂ 2 φ ∂ y 2 + ∂ 2 φ ∂ z 2 = Δ φ \nabla \cdot\nabla \varphi = (\frac{\partial}{\partial x},\frac{\partial}{\partial y},\frac{\partial}{\partial z})\cdot (\frac{\partial \varphi}{\partial x},\frac{\partial \varphi}{\partial y},\frac{\partial \varphi}{\partial z})=\frac{\partial^2\varphi}{\partial x^2}+\frac{\partial^2\varphi}{\partial y^2}+\frac{\partial^2\varphi}{\partial z^2}=\Delta \varphi φ=(x,y,z)(xφ,yφ,zφ)=x22φ+y22φ+z22φ=Δφ

格林第一公式

∫ Ω ( ∇ u ⋅ ∇ v + v Δ u )   d x = ∫ Γ v ∂ u ∂ n   d s \int_{\Omega} (\nabla u \cdot \nabla v + v \Delta u) \, dx = \int_{\Gamma} v \frac{\partial u}{\partial n} \, ds Ω(uv+vΔu)dx=Γvnuds

书上第四章的格林公式

Ω \Omega Ω 是二维区域
∬ Ω ( u Δ v − v Δ u ) d x d y = ∫ ∂ Ω ( u ∂ v ∂ n − v ∂ u ∂ n ) d l \iint_{\Omega}(u\Delta v-v\Delta u)dxdy=\int_{\partial{\Omega}}(u\frac{\partial v}{\partial \bf n}-v\frac{\partial u}{\partial \bf n})dl Ω(uΔvvΔu)dxdy=Ω(unvvnu)dl其中 n \bf n n ∂ Ω \partial \Omega Ω 的单位外法向量

题目一

Ω \Omega Ω R 2 \mathbb{R}^2 R2 中的一个有界开区域,其光滑边界用 Γ \Gamma Γ 表示。 Ω \Omega Ω 上定义的泛函为:
J ( v ) = 1 2 ∣ ∣ v ∣ ∣ H 1 ( Ω ) 2 + ∫ Γ ( 1 2 σ v 2 − g v ) d s J(v)=\frac{1}{2}||v||_{H_{1}(\Omega)}^{2}+\int_{\Gamma}(\frac{1}{2}\sigma v^2-gv)ds J(v)=21∣∣vH1(Ω)2+Γ(21σv2gv)ds其中 σ ∈ C ( Γ ) , g ∈ C ( Γ ) \sigma\in C(\Gamma),g\in C(\Gamma) σC(Γ)gC(Γ),且 0 < σ 0 < σ < σ 1 < + ∞ 0<\sigma_0<\sigma<\sigma_1<+\infty 0<σ0<σ<σ1<+。变分问题的描述为:求 u ∈ H 1 ( Ω ) u\in H^{1}(\Omega) uH1(Ω),使得 J ( u ) = m i n v ∈ H 1 ( Ω ) J ( v ) J(u)=min_{v\in H^{1}(\Omega)}J(v) J(u)=minvH1(Ω)J(v)请详细地证明这个变分问题的解存在并且唯一

∣ ∣ v ∣ ∣ H 1 ( Ω ) 2 ||v||_{H_{1}(\Omega)}^{2} ∣∣vH1(Ω)2 表示函数 v v v H 1 ( Ω ) H_{1}(\Omega) H1(Ω) 空间中的范数的平方。

H 1 ( Ω ) H_{1}(\Omega) H1(Ω) 是一个Sobolev空间,通常用来表示具有某些平滑性的函数空间。对于一个定义在域 Ω \Omega Ω 上的函数 v v v,其在 H 1 ( Ω ) H_{1}(\Omega) H1(Ω) 空间中的范数定义为:

∣ ∣ v ∣ ∣ H 1 ( Ω ) = ( ∫ Ω ∣ v ∣ 2 + ∣ ∇ v ∣ 2   d x ) 1 / 2 ||v||_{H_{1}(\Omega)} = \left( \int_{\Omega} |v|^2 + |\nabla v|^2 \, dx \right)^{1/2} ∣∣vH1(Ω)=(Ωv2+∣∇v2dx)1/2

其中, ∣ v ∣ 2 |v|^2 v2 表示函数 v v v 的平方, ∣ ∇ v ∣ 2 |\nabla v|^2 ∣∇v2 表示 v v v 的梯度的平方(即各个偏导数的平方和), ∫ Ω \int_{\Omega} Ω 表示对整个域 Ω \Omega Ω 的积分。

因此, ∣ ∣ v ∣ ∣ H 1 ( Ω ) 2 ||v||_{H_{1}(\Omega)}^{2} ∣∣vH1(Ω)2 就是上述范数的平方,它考虑了函数 v v v 本身的大小和它的变化率(通过梯度)。

证明:
(1) 证明泛函 J J J H 1 ( Ω ) H^{1}(\Omega) H1(Ω) 上有下确界

为了证明泛函 J J J H 1 ( Ω ) H^{1}(\Omega) H1(Ω) 上有下确界,我们需要证明对于任意 v ∈ H 1 ( Ω ) v \in H^{1}(\Omega) vH1(Ω) J ( v ) J(v) J(v) 的值有一个下界。根据泛函 J J J 的定义:

J ( v ) = 1 2 ∣ ∣ v ∣ ∣ H 1 ( Ω ) 2 + ∫ Γ ( 1 2 σ v 2 − g v ) d s J(v) = \frac{1}{2}||v||_{H_{1}(\Omega)}^{2} + \int_{\Gamma}(\frac{1}{2}\sigma v^2 - gv)ds J(v)=21∣∣vH1(Ω)2+Γ(21σv2gv)ds

首先,我们考虑泛函的第一部分,即 ∣ ∣ v ∣ ∣ H 1 ( Ω ) 2 ||v||_{H_{1}(\Omega)}^{2} ∣∣vH1(Ω)2,这是 H 1 ( Ω ) H^{1}(\Omega) H1(Ω) 中元素的平方范数,显然是非负的。所以,这一部分对泛函 J ( v ) J(v) J(v) 的值起着一个非负的贡献。

所以 J ( v ) = 1 2 ∣ ∣ v ∣ ∣ H 1 ( Ω ) 2 + ∫ Γ ( 1 2 σ v 2 − g v ) d s J(v) = \frac{1}{2}||v||_{H_{1}(\Omega)}^{2} + \int_{\Gamma}(\frac{1}{2}\sigma v^2 - gv)ds J(v)=21∣∣vH1(Ω)2+Γ(21σv2gv)ds ≥ ∫ Γ ( 1 2 σ v 2 − g v ) d s = ∫ Γ 1 2 ( σ v 2 − 2 σ v ⋅ g 1 σ + g 2 σ ) − g 2 2 σ d s \geq \int_{\Gamma}(\frac{1}{2}\sigma v^2 - gv)ds=\int_{\Gamma}\frac{1}{2}(\sigma v^2-2\sqrt{\sigma}v\cdot g\frac{1}{\sqrt{\sigma}}+\frac{g^2}{\sigma})-\frac{g^2}{2\sigma}ds Γ(21σv2gv)ds=Γ21(σv22σ vgσ 1+σg22σg2ds = ∫ Γ 1 2 ( σ v − g 1 σ ) 2 − g 2 2 σ d s =\int_{\Gamma}\frac{1}{2}(\sqrt{\sigma}v-g\frac{1}{\sqrt{\sigma}})^2-\frac{g^2}{2\sigma}ds =Γ21(σ vgσ 1)22σg2ds ≥ − ∫ Γ − 1 2 σ g 2 d s     ( 因为 1 2 ( σ v − g 1 σ ) 2 是非负项 ) \geq- \int_{\Gamma}-\frac{1}{2\sigma}g^2ds\ \ \ (因为\frac{1}{2}(\sqrt{\sigma}v-g\frac{1}{\sqrt{\sigma}})^2是非负项) Γ2σ1g2ds   (因为21(σ vgσ 1)2是非负项)

所以 J J J H 1 ( Ω ) H_1(\Omega) H1(Ω) 有下确界,不妨设 m = inf ⁡ v ∈ H 1 ( Ω ) J ( v ) m=\inf_{v\in H^{1}(\Omega)}J(v) m=infvH1(Ω)J(v),那么由下确界的定义, ∀ k ∈ N + ,   ∃ u k ∈ H 1 ( Ω ) \forall k\in\mathbb{N}_+,\ \exists u_{k}\in H^{1}(\Omega) kN+, ukH1(Ω) 使得 m ≤ J ( u k ) = 1 2 ∣ ∣ u k ∣ ∣ H 1 ( Ω ) 2 + ∫ Γ ( 1 2 σ u k 2 − g u k ) d s < m + 1 k m\leq J(u_{k})=\frac{1}{2}||u_{k}||_{H_{1}(\Omega)}^{2}+\int_{\Gamma}(\frac{1}{2}\sigma u_{k}^2-gu_{k})ds<m+\frac{1}{k} mJ(uk)=21∣∣ukH1(Ω)2+Γ(21σuk2guk)ds<m+k1

(2) 证明 { u k } \{u_k\} {uk} H 1 ( Ω ) H^1(\Omega) H1(Ω) 中的基本列,也即变分问题解的存在性

首先,根据引理 3.4 3.4 3.4 的等式,有 J ( u k ) + J ( u l ) − 2 J ( u k + u l 2 ) = ∣ ∣ ∇ ( u k − u l ) 2 ∣ ∣ L 2 ( Ω ) 2 ≥ 0 J(u_k)+J(u_l)-2J(\frac{u_k+u_l}{2})=||\frac{\nabla(u_k-u_l)}{2}||_{L_{2}(\Omega)}^{2}\geq0 J(uk)+J(ul)2J(2uk+ul)=∣∣2(ukul)L2(Ω)20

∀ k , l ∈ N + \forall k,l\in\mathbb{N}_+ k,lN+
J ( u k ) + J ( u l ) − 2 J ( u k + u l 2 ) ≤ m + 1 k + m + 1 l − 2 m = 1 k + 1 l J(u_k)+J(u_l)-2J(\frac{u_k+u_l}{2})\leq m+\frac{1}{k}+m+\frac{1}{l}-2m=\frac{1}{k}+\frac{1}{l} J(uk)+J(ul)2J(2uk+ul)m+k1+m+l12m=k1+l1这里是因为第一步证明出了下确界后,根据下确界的定义有 J ( u k ) < m + 1 k J(u_{k})<m+\frac{1}{k} J(uk)<m+k1 同理对 u l u_l ul 也是,而又因为 J J J 的下确界是 m m m 所以 2 J ( u k + u l 2 ) ≥ 2 m 2J(\frac{u_k+u_l}{2})\geq 2m 2J(2uk+ul)2m − 2 J ( u k + u l 2 ) ≤ − 2 m -2J(\frac{u_k+u_l}{2})\leq -2m 2J(2uk+ul)2m 所以得到上面的不等式

得到了 J ( u k ) + J ( u l ) − 2 J ( u k + u l 2 ) J(u_k)+J(u_l)-2J(\frac{u_k+u_l}{2}) J(uk)+J(ul)2J(2uk+ul) 的不等式关系后,再把其利用平行四边形等式进行展开,

并将 d x dx dx d s ds ds 进行合并化简,拼凑 ∣ ∣ u k − u l ∣ ∣ L 2 ( Ω ) 2 ||u_k-u_l||_{L_2(\Omega)}^{2} ∣∣ukulL2(Ω)2

这里贴一下公式 ∣ ∣ u ∣ ∣ H 1 ( Ω ) 2 = ∫ Ω u 2 d x + ∫ Ω ∣ ∇ u ∣ 2 d x ||u||_{H_1(\Omega)}^{2}=\int_{\Omega}u^2dx+\int_{\Omega}|\nabla u|^2dx ∣∣uH1(Ω)2=Ωu2dx+Ω∣∇u2dx x x x 是向量,这里把泛函 J ( v ) J(v) J(v) 的表达式形式用这种形式表示 J ( v ) = 1 2 ∫ Ω v 2 + ∣ ∇ v ∣ 2 d x + ∫ Γ 1 2 σ v 2 − g v d s J(v)=\frac{1}{2}\int_{\Omega}v^2+|\nabla v|^2dx+\int_{\Gamma}\frac{1}{2}\sigma v^2-gvds J(v)=21Ωv2+∣∇v2dx+Γ21σv2gvds J ( u k ) , J ( u l ) , − 2 J ( u k + u l 2 ) J(u_k),J(u_l),-2J(\frac{u_k+u_l}{2}) J(uk),J(ul),2J(2uk+ul) 分别带进去,计算量比较大,化简后凑完全平方 ( u k − u l ) 2 (u_k-u_l)^2 (ukul)2 最终得到

J ( u k ) + J ( u l ) − 2 J ( u k + u l 2 ) = 1 4 ∫ Ω ( u k − u l ) 2 + ∣ ∇ ( u k − u l ) ∣ 2 d x J(u_k)+J(u_l)-2J(\frac{u_k+u_l}{2})=\frac{1}{4}\int_{\Omega}(u_k-u_l)^2+|\nabla (u_k-u_l)|^2dx J(uk)+J(ul)2J(2uk+ul)=41Ω(ukul)2+∣∇(ukul)2dx + 1 4 σ ∫ Γ ( u k − u l ) 2 d s = 1 4 ∣ ∣ u k − u l ∣ ∣ H 1 ( Ω ) 2 + 1 4 σ ∫ Γ ( u k − u l ) 2 d s +\frac{1}{4}\sigma\int_{\Gamma}(u_k-u_l)^2ds=\frac{1}{4}||u_k-u_l||_{H^1(\Omega)}^{2}+\frac{1}{4}\sigma\int_{\Gamma}(u_k-u_l)^2ds +41σΓ(ukul)2ds=41∣∣ukulH1(Ω)2+41σΓ(ukul)2ds因为上面推导得 J ( u k ) + J ( u l ) − 2 J ( u k + u l 2 ) ≤ 1 k + 1 l J(u_k)+J(u_l)-2J(\frac{u_k+u_l}{2})\leq \frac{1}{k}+\frac{1}{l} J(uk)+J(ul)2J(2uk+ul)k1+l1所以也即 1 4 ∣ ∣ u k − u l ∣ ∣ H 1 ( Ω ) 2 + 1 4 σ ∫ Γ ( u k − u l ) 2 d s ≤ 1 k + 1 l \frac{1}{4}||u_k-u_l||_{H^1(\Omega)}^{2}+\frac{1}{4}\sigma\int_{\Gamma}(u_k-u_l)^2ds\leq \frac{1}{k}+\frac{1}{l} 41∣∣ukulH1(Ω)2+41σΓ(ukul)2dsk1+l1又因为 1 4 σ ∫ Γ ( u k − u l ) 2 d s \frac{1}{4}\sigma\int_{\Gamma}(u_k-u_l)^2ds 41σΓ(ukul)2ds是非负项,可得 0 ≤ ∣ ∣ u k − u l ∣ ∣ H 1 ( Ω ) 2 ≤ 4 ( 1 k + 1 l ) → 0 ( k , l → ∞ ) 0\leq ||u_k-u_l||_{H^1(\Omega)}^2\leq 4(\frac{1}{k}+\frac{1}{l})\rightarrow 0(k,l\rightarrow \infty) 0∣∣ukulH1(Ω)24(k1+l1)0(k,l)所以 { u k } \{u_k\} {uk} H 1 ( Ω ) H^1(\Omega) H1(Ω) 的基本列

H 1 ( Ω ) H^1(\Omega) H1(Ω) 的完备性知, ∃ u ∈ H 1 ( Ω ) ,   s . t .   ∣ ∣ u k − u ∣ ∣ H 1 ( Ω ) → 0 ( k → ∞ ) \exists u\in H^1(\Omega),\ s.t. \ ||u_k-u||_{H^1(\Omega)}\rightarrow 0(k\rightarrow \infty) uH1(Ω), s.t. ∣∣ukuH1(Ω)0(k)

从而 ∣ ∣ u k − u ∣ ∣ L 2 ( Ω ) → 0 ( k → ∞ ) ||u_k-u||_{L_2(\Omega)}\rightarrow 0(k\rightarrow \infty) ∣∣ukuL2(Ω)0(k) 这是因为根据 H 1 ( Ω ) H^1(\Omega) H1(Ω) L 2 ( Ω ) L_2(\Omega) L2(Ω) 各自范数定义的数学表达式, H 1 ( Ω ) H^1(\Omega) H1(Ω) 范数是两个平方项之和取 1 / 2 1/2 1/2 次幂,而 L 2 ( Ω ) L^2(\Omega) L2(Ω) 范数是一个平方项取 1 / 2 1/2 1/2 次幂且该项在 H 1 ( Ω ) H^1(\Omega) H1(Ω) 范数中也出现

从而 ∣ ∣ u k − u ∣ ∣ L 2 ( Ω ) → 0 ( k → ∞ ) ||u_k-u||_{L_2(\Omega)}\rightarrow 0(k\rightarrow \infty) ∣∣ukuL2(Ω)0(k)

对这个等式 m ≤ J ( u k ) = 1 2 ∣ ∣ u k ∣ ∣ H 1 ( Ω ) 2 + ∫ Γ ( 1 2 σ u k 2 − g u k ) d s < m + 1 k m\leq J(u_{k})=\frac{1}{2}||u_{k}||_{H_{1}(\Omega)}^{2}+\int_{\Gamma}(\frac{1}{2}\sigma u_{k}^2-gu_{k})ds<m+\frac{1}{k} mJ(uk)=21∣∣ukH1(Ω)2+Γ(21σuk2guk)ds<m+k1取极限 k → ∞ k\rightarrow\infty k

得到 J ( u ) = m = inf ⁡ v ∈ H 1 ( Ω ) J ( v ) J(u)=m=\inf_{v\in H^1(\Omega)}J(v) J(u)=m=infvH1(Ω)J(v)

(3) 证明变分问题解的唯一性

假设 u , w u,w u,w 都是变分问题的解,即 J ( u ) = J ( w ) = m = inf ⁡ v ∈ H 1 ( Ω ) J ( v ) J(u)=J(w)=m=\inf_{v\in H^1(\Omega)}J(v) J(u)=J(w)=m=infvH1(Ω)J(v)

那么按照 (2) 中凑出的表达式 0 ≤ ∣ ∣ ∇ ( u − w ) 2 ∣ ∣ L 2 ( Ω ) 2 = J ( u ) + J ( w ) − 2 J ( u + w 2 ) 0\leq ||\frac{\nabla(u-w)}{2}||_{L_{2}(\Omega)}^{2} = J(u)+J(w)-2J(\frac{u+w}{2}) 0∣∣2(uw)L2(Ω)2=J(u)+J(w)2J(2u+w) = m + m − 2 J ( u + w 2 ) =m+m-2J(\frac{u+w}{2}) =m+m2J(2u+w)这里是因为 u , w u,w u,w 都是变分问题的解,即 J ( u ) = J ( w ) = m J(u)=J(w)=m J(u)=J(w)=m

J ( u + w 2 ) ≥ m J(\frac{u+w}{2})\geq m J(2u+w)m,因为 m m m 是下确界,所以 − 2 J ( u + w 2 ) ≤ − 2 m -2J(\frac{u+w}{2})\leq -2m 2J(2u+w)2m

所以 0 ≤ ∣ ∣ ∇ ( u − w ) 2 ∣ ∣ L 2 ( Ω ) 2 = J ( u ) + J ( w ) − 2 J ( u + w 2 ) 0\leq ||\frac{\nabla(u-w)}{2}||_{L_{2}(\Omega)}^{2} = J(u)+J(w)-2J(\frac{u+w}{2}) 0∣∣2(uw)L2(Ω)2=J(u)+J(w)2J(2u+w) = m + m − 2 J ( u + w 2 ) ≤ m + m − 2 m = 0 =m+m-2J(\frac{u+w}{2})\leq m+m-2m=0 =m+m2J(2u+w)m+m2m=0

所以 u = w u=w u=w

然后导出与这个变分问题等价的边值问题

u u u 是该变分问题的解, v ∈ H 0 1 ( Ω ) v\in H_{0}^{1}(\Omega) vH01(Ω),令 j ( ϵ ) = J ( u + ϵ v ) = 1 2 ∫ Ω ( u + ϵ v ) 2 + ∣ ∇ ( u + ϵ v ) ∣ 2 d x + ∫ Γ 1 2 σ ( u + ϵ v ) 2 − g ( u + ϵ v ) d s j(\epsilon)=J(u+\epsilon v)=\frac{1}{2}\int_{\Omega}(u+\epsilon v)^2+|\nabla (u+\epsilon v)|^2dx+\int_{\Gamma}\frac{1}{2}\sigma (u+\epsilon v)^2-g(u+\epsilon v)ds j(ϵ)=J(u+ϵv)=21Ω(u+ϵv)2+∣∇(u+ϵv)2dx+Γ21σ(u+ϵv)2g(u+ϵv)ds ϵ \epsilon ϵ 求导

附注 ∣ ∇ ( u + ϵ v ) ∣ 2 |\nabla (u+\epsilon v)|^2 ∣∇(u+ϵv)2 ϵ \epsilon ϵ 求导的过程

∇ ( u + ϵ v ) = ∇ u + ∇ ϵ v = ∇ u + ϵ ∇ v \nabla (u+\epsilon v)=\nabla u+\nabla \epsilon v=\nabla u+ \epsilon \nabla v (u+ϵv)=u+ϵv=u+ϵv

∣ x ⃗ ∣ 2 = x ⃗ ⋅ x ⃗ |\vec{\mathbf{x}}|^2=\vec{\mathbf{x}}\cdot \vec{\mathbf{x}} x 2=x x ,向量模的平方等于自身和自身做点积
∣ ∇ ( u + ϵ v ) ∣ 2 = ( ∇ u + ϵ ∇ v ) ⋅ ( ∇ u + ϵ ∇ v ) |\nabla (u+\epsilon v)|^2 = (\nabla u + \epsilon \nabla v) \cdot (\nabla u + \epsilon \nabla v) ∣∇(u+ϵv)2=(u+ϵv)(u+ϵv)

展开后得到:

∣ ∇ ( u + ϵ v ) ∣ 2 = ∇ u ⋅ ∇ u + 2 ϵ ∇ u ⋅ ∇ v + ϵ 2 ∇ v ⋅ ∇ v |\nabla (u+\epsilon v)|^2 = \nabla u \cdot \nabla u + 2\epsilon \nabla u \cdot \nabla v + \epsilon^2 \nabla v \cdot \nabla v ∣∇(u+ϵv)2=uu+2ϵuv+ϵ2vv

ϵ \epsilon ϵ 求一阶导数,我们得到:

∂ ∂ ϵ ∣ ∇ ( u + ϵ v ) ∣ 2 = 2 ∇ u ⋅ ∇ v + 2 ϵ ∇ v ⋅ ∇ v \frac{\partial}{\partial \epsilon}|\nabla (u+\epsilon v)|^2 = 2 \nabla u \cdot \nabla v + 2\epsilon \nabla v \cdot \nabla v ϵ∣∇(u+ϵv)2=2∇uv+2ϵvv

ϵ = 0 \epsilon = 0 ϵ=0 时,我们有:

∂ ∂ ϵ ∣ ∇ ( u + ϵ v ) ∣ 2 ∣ ϵ = 0 = 2 ∇ u ⋅ ∇ v \left.\frac{\partial}{\partial \epsilon}|\nabla (u+\epsilon v)|^2\right|_{\epsilon=0} = 2 \nabla u \cdot \nabla v ϵ∣∇(u+ϵv)2 ϵ=0=2∇uv

ϵ \epsilon ϵ 求导得 j ′ ( ϵ ) = 1 2 ∫ Ω 2 ( u + ϵ v ) v + 2 ∇ u ⋅ ∇ v + 2 ϵ ∣ ∇ v ∣ 2 d x + ∫ Γ σ ( u + ϵ v ) v − g v d s j'(\epsilon)=\frac{1}{2}\int_{\Omega}2(u+\epsilon v)v+2 \nabla u \cdot \nabla v+2\epsilon |\nabla v|^2dx+\int_{\Gamma}\sigma (u+\epsilon v)v-gvds j(ϵ)=21Ω2(u+ϵv)v+2∇uv+2ϵ∣∇v2dx+Γσ(u+ϵv)vgvds那么 j ′ ( 0 ) = ∫ Ω u v + ∇ u ⋅ ∇ v d x + ∫ Γ ( σ u − g ) v d s j'(0)=\int_{\Omega}uv+\nabla u\cdot\nabla vdx+\int_{\Gamma}(\sigma u-g)vds j(0)=Ωuv+uvdx+Γ(σug)vds = ∫ Ω ( u − Δ u ) v d x + ∫ Γ ( σ u − g + ∂ u ∂ n ) v d s =\int_{\Omega}(u-\Delta u)vdx+\int_{\Gamma}(\sigma u-g+\frac{\partial u}{\partial n})vds =Ω(uΔu)vdx+Γ(σug+nu)vds

这一步的推导过程:
这个等式是通过应用格林公式和部分积分来推导的。格林公式将一个域内的散度项转化为边界上的通量项。我们可以按照以下步骤来推导这个等式:

首先,考虑函数 u u u v v v 在定义在域 Ω \Omega Ω 上,并且 Γ \Gamma Γ Ω \Omega Ω 的边界。

  1. 应用格林公式:

    根据格林第一公式, ∫ Ω ( ∇ u ⋅ ∇ v + v Δ u )   d x = ∫ Γ v ∂ u ∂ n   d s \int_{\Omega} (\nabla u \cdot \nabla v + v \Delta u) \, dx = \int_{\Gamma} v \frac{\partial u}{\partial n} \, ds Ω(uv+vΔu)dx=Γvnuds我们有:
    ∫ Ω ∇ u ⋅ ∇ v   d x = − ∫ Ω v Δ u   d x + ∫ Γ v ∂ u ∂ n   d s \int_{\Omega} \nabla u \cdot \nabla v \, dx = -\int_{\Omega} v \Delta u \, dx + \int_{\Gamma} v \frac{\partial u}{\partial n} \, ds Ωuvdx=ΩvΔudx+Γvnuds
    其中, Δ u \Delta u Δu u u u 的拉普拉斯算子, ∂ u ∂ n \frac{\partial u}{\partial n} nu u u u 沿边界法线方向的导数。

  2. 整合项:

    将上述公式的右侧加到等式的左侧,我们得到:
    ∫ Ω u v   d x + ∫ Ω ∇ u ⋅ ∇ v   d x + ∫ Γ ( σ u − g ) v   d s = ∫ Ω u v   d x − ∫ Ω v Δ u   d x + ∫ Γ v ∂ u ∂ n   d s + ∫ Γ ( σ u − g ) v   d s \int_{\Omega} uv \, dx + \int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Gamma} (\sigma u - g) v \, ds = \int_{\Omega} uv \, dx - \int_{\Omega} v \Delta u \, dx + \int_{\Gamma} v \frac{\partial u}{\partial n} \, ds + \int_{\Gamma} (\sigma u - g) v \, ds Ωuvdx+Ωuvdx+Γ(σug)vds=ΩuvdxΩvΔudx+Γvnuds+Γ(σug)vds

    这里,我们添加了 ∫ Ω u v   d x \int_{\Omega} uv \, dx Ωuvdx ∫ Γ ( σ u − g ) v   d s \int_{\Gamma} (\sigma u - g) v \, ds Γ(σug)vds 这两项,它们分别代表了在域 Ω \Omega Ω 和边界 Γ \Gamma Γ 上的积分。

  3. 简化:

    现在,我们可以将等式的右侧重新组织,得到:
    ∫ Ω u v + ∇ u ⋅ ∇ v   d x + ∫ Γ ( σ u − g ) v   d s = ∫ Ω ( u − Δ u ) v   d x + ∫ Γ ( σ u − g + ∂ u ∂ n ) v   d s \int_{\Omega} uv + \nabla u \cdot \nabla v \, dx + \int_{\Gamma} (\sigma u - g) v \, ds = \int_{\Omega} (u - \Delta u) v \, dx + \int_{\Gamma} (\sigma u - g + \frac{\partial u}{\partial n}) v \, ds Ωuv+uvdx+Γ(σug)vds=Ω(uΔu)vdx+Γ(σug+nu)vds
    这就是最终的等式。

这个推导利用了格林公式和部分积分的基本性质,将微分算子转化为边界上的积分,从而简化了问题的处理。

由于 u u u 是变分问题的解,根据必要性条件可知 j ′ ( 0 ) = 0 j'(0)=0 j(0)=0
j ′ ( 0 ) = ∫ Ω u v + ∇ u ⋅ ∇ v d x + ∫ Γ ( σ u − g ) v d s j'(0)=\int_{\Omega}uv+\nabla u\cdot\nabla vdx+\int_{\Gamma}(\sigma u-g)vds j(0)=Ωuv+uvdx+Γ(σug)vds = ∫ Ω ( u − Δ u ) v d x + ∫ Γ ( σ u − g + ∂ u ∂ n ) v d s = 0 =\int_{\Omega}(u-\Delta u)vdx+\int_{\Gamma}(\sigma u-g+\frac{\partial u}{\partial n})vds=0 =Ω(uΔu)vdx+Γ(σug+nu)vds=0

在这个表达式中, j ′ ( 0 ) j'(0) j(0) 是某个泛函 j j j 0 0 0 处的导数。根据给出的条件,对于所有在 Ω \Omega Ω 上光滑且在边界上消失的函数 v v v(即 v ∈ C 0 ∞ ( Ω ) v \in C_0^{\infty}(\Omega) vC0(Ω)),都有:

∫ Ω ( u − Δ u ) v   d x + ∫ Γ ( σ u − g + ∂ u ∂ n ) v   d s = 0 \int_{\Omega} (u - \Delta u) v \, dx + \int_{\Gamma} (\sigma u - g + \frac{\partial u}{\partial n}) v \, ds = 0 Ω(uΔu)vdx+Γ(σug+nu)vds=0

由于 v v v 在边界 Γ \Gamma Γ 上为零(即 v ∣ Γ = 0 v|_{\Gamma} = 0 vΓ=0),边界上的积分项消失,我们得到:

∫ Ω ( u − Δ u ) v   d x = 0 \int_{\Omega} (u - \Delta u) v \, dx = 0 Ω(uΔu)vdx=0

这个等式对于所有 v ∈ C 0 ∞ ( Ω ) v \in C_0^{\infty}(\Omega) vC0(Ω) 都成立。而任意给定的 v v v 不恒为 0 0 0,所以 u − Δ u = 0 in Ω u - \Delta u = 0 \quad \text{in} \quad \Omega uΔu=0inΩ根据变分原理,如果一个线性泛函对于一个充分大的函数空间中的所有函数都为零,那么被积函数必须在该空间的对偶空间中几乎处处为零。在这种情况下,因为 C 0 ∞ ( Ω ) C_0^{\infty}(\Omega) C0(Ω) 是一个在 Ω \Omega Ω 上的密集子空间,我们可以推断出:

u − Δ u = 0 in Ω u - \Delta u = 0 \quad \text{in} \quad \Omega uΔu=0inΩ

这意味着在 Ω \Omega Ω 上有 ∫ Ω ( u − Δ u ) v   d x = 0 \int_{\Omega} (u - \Delta u) v \, dx = 0 Ω(uΔu)vdx=0 成立。这个结果表明 u u u 是一个满足泊松方程 u − Δ u = 0 u - \Delta u = 0 uΔu=0 的函数。

从上一个推导步骤中,我们已经知道对于所有 v ∈ C 0 ∞ ( Ω ) v \in C_0^{\infty}(\Omega) vC0(Ω),有:

∫ Ω ( u − Δ u ) v   d x = 0 \int_{\Omega} (u - \Delta u) v \, dx = 0 Ω(uΔu)vdx=0

并且我们推断出 u − Δ u = 0 u - \Delta u = 0 uΔu=0 Ω \Omega Ω 内成立。现在,我们回到原始的等式:

∫ Ω ( u − Δ u ) v   d x + ∫ Γ ( σ u − g + ∂ u ∂ n ) v   d s = 0 \int_{\Omega} (u - \Delta u) v \, dx + \int_{\Gamma} (\sigma u - g + \frac{\partial u}{\partial n}) v \, ds = 0 Ω(uΔu)vdx+Γ(σug+nu)vds=0

由于我们已经知道第一个积分项为零,所以只剩下边界项:

∫ Γ ( σ u − g + ∂ u ∂ n ) v   d s = 0 \int_{\Gamma} (\sigma u - g + \frac{\partial u}{\partial n}) v \, ds = 0 Γ(σug+nu)vds=0

这个等式对所有 v ∈ C 0 ∞ ( Ω ) v \in C_0^{\infty}(\Omega) vC0(Ω) 成立,但是 C 0 ∞ ( Ω ) C_0^{\infty}(\Omega) C0(Ω) 中的函数在边界上是零。为了让这个等式对于边界上非零的函数也成立,我们需要考虑一个更广泛的函数空间,比如在边界上也光滑的函数空间。

然而,即使在这种情况下,为了让上述积分为零,被积函数(即边界项中的 σ u − g + ∂ u ∂ n \sigma u - g + \frac{\partial u}{\partial n} σug+nu)必须在边界 Γ \Gamma Γ 上几乎处处为零。因此,我们可以推导出:

σ u − g + ∂ u ∂ n = 0 on Γ \sigma u - g + \frac{\partial u}{\partial n} = 0 \quad \text{on} \quad \Gamma σug+nu=0onΓ

这表明 u u u 在边界 Γ \Gamma Γ 上满足这个边界条件。结合内部的泊松方程 u − Δ u = 0 u - \Delta u = 0 uΔu=0,我们得到了一个完整的边值问题。

所以变分问题的等价边值问题为:
{ u − Δ u = 0 in  Ω , σ u + ∂ u ∂ n ∣ Γ = g \begin{cases} u - \Delta u = 0 & \text{in } \Omega, \\ \sigma u + \frac{\partial u}{\partial n}|_{\Gamma} = g & \end{cases} {uΔu=0σu+nuΓ=gin Ω,

题目二

Ω \Omega Ω R 2 \mathbb{R}^2 R2 中的有界开区域,其光滑边界为 Γ \Gamma Γ Ω \Omega Ω 上定义的泛函为: J ( v ) = ∬ Ω 1 2 [ ( ∂ v ∂ x ) 2 + ( ∂ v ∂ y ) 2 ] d x d y + ∫ Γ ( 1 2 σ v 2 − g v ) d s J(v)=\iint_{\Omega}\frac{1}{2}[(\frac{\partial v}{\partial x})^2+(\frac{\partial v}{\partial y})^2]dxdy+\int_{\Gamma}(\frac{1}{2}\sigma v^2-gv)ds J(v)=Ω21[(xv)2+(yv)2]dxdy+Γ(21σv2gv)ds变分问题的描述为:求 u ∈ V ,   s . t . u\in V,\ s.t. uV, s.t. J ( u ) = min ⁡ v ∈ V J ( v ) J(u)=\min_{v\in V}J(v) J(u)=vVminJ(v)其中 V = C 2 ( Ω ) ∩ C 1 ( Ω ‾ ) V=C^2(\Omega)\cap C^1(\overline{\Omega}) V=C2(Ω)C1(Ω) 请导出与此变分问题等价的边值问题

解:

j ( ϵ ) = J ( u + ϵ v ) = ∬ Ω 1 2 [ ( ∂ ( u + ϵ v ) ∂ x ) 2 + ( ∂ ( u + ϵ v ) ∂ y ) 2 ] d x d y + ∫ Γ ( 1 2 σ ( u + ϵ v ) 2 − g ( u + ϵ v ) ) d s j(\epsilon)=J(u + \epsilon v) = \iint_{\Omega} \frac{1}{2} \left[\left(\frac{\partial (u + \epsilon v)}{\partial x}\right)^2 + \left(\frac{\partial (u + \epsilon v)}{\partial y}\right)^2\right] dx dy + \int_{\Gamma} \left(\frac{1}{2} \sigma (u + \epsilon v)^2 - g (u + \epsilon v)\right) ds j(ϵ)=J(u+ϵv)=Ω21[(x(u+ϵv))2+(y(u+ϵv))2]dxdy+Γ(21σ(u+ϵv)2g(u+ϵv))ds

ϵ \epsilon ϵ 求导,使用链式法则和乘积法则:

∂ ∂ ϵ ( ∂ ( u + ϵ v ) ∂ x ) 2 = 2 ( ∂ ( u + ϵ v ) ∂ x ) ( ∂ v ∂ x ) \frac{\partial}{\partial \epsilon} \left(\frac{\partial (u + \epsilon v)}{\partial x}\right)^2 = 2 \left(\frac{\partial (u + \epsilon v)}{\partial x}\right) \left(\frac{\partial v}{\partial x}\right) ϵ(x(u+ϵv))2=2(x(u+ϵv))(xv)

同样,

∂ ∂ ϵ ( ∂ ( u + ϵ v ) ∂ y ) 2 = 2 ( ∂ ( u + ϵ v ) ∂ y ) ( ∂ v ∂ y ) \frac{\partial}{\partial \epsilon} \left(\frac{\partial (u + \epsilon v)}{\partial y}\right)^2 = 2 \left(\frac{\partial (u + \epsilon v)}{\partial y}\right) \left(\frac{\partial v}{\partial y}\right) ϵ(y(u+ϵv))2=2(y(u+ϵv))(yv)

因此, Ω \Omega Ω 上双重积分的导数为:

∬ Ω [ ( ∂ ( u + ϵ v ) ∂ x ) ( ∂ v ∂ x ) + ( ∂ ( u + ϵ v ) ∂ y ) ( ∂ v ∂ y ) ] d x d y \iint_{\Omega} \left[\left(\frac{\partial (u + \epsilon v)}{\partial x}\right) \left(\frac{\partial v}{\partial x}\right) + \left(\frac{\partial (u + \epsilon v)}{\partial y}\right) \left(\frac{\partial v}{\partial y}\right)\right] dx dy Ω[(x(u+ϵv))(xv)+(y(u+ϵv))(yv)]dxdy

对于 Γ \Gamma Γ 上的单重积分部分,我们有:

1 2 σ ( u + ϵ v ) 2 − g ( u + ϵ v ) \frac{1}{2} \sigma (u + \epsilon v)^2 - g (u + \epsilon v) 21σ(u+ϵv)2g(u+ϵv)

ϵ \epsilon ϵ 求导,我们得到:

σ ( u + ϵ v ) v − g v \sigma (u + \epsilon v) v - g v σ(u+ϵv)vgv

因此, Γ \Gamma Γ 上单重积分的导数为:

∫ Γ ( σ ( u + ϵ v ) v − g v ) d s \int_{\Gamma} \left(\sigma (u + \epsilon v) v - g v\right) ds Γ(σ(u+ϵv)vgv)ds

将这两部分合并,我们得到 j ′ ( ϵ ) j'(\epsilon) j(ϵ) 的表达式:

j ′ ( ϵ ) = ∬ Ω [ ( ∂ ( u + ϵ v ) ∂ x ) ( ∂ v ∂ x ) + ( ∂ ( u + ϵ v ) ∂ y ) ( ∂ v ∂ y ) ] d x d y + ∫ Γ ( σ ( u + ϵ v ) v − g v ) d s j'(\epsilon) = \iint_{\Omega} \left[\left(\frac{\partial (u + \epsilon v)}{\partial x}\right) \left(\frac{\partial v}{\partial x}\right) + \left(\frac{\partial (u + \epsilon v)}{\partial y}\right) \left(\frac{\partial v}{\partial y}\right)\right] dx dy + \int_{\Gamma} \left(\sigma (u + \epsilon v) v - g v\right) ds j(ϵ)=Ω[(x(u+ϵv))(xv)+(y(u+ϵv))(yv)]dxdy+Γ(σ(u+ϵv)vgv)ds

那么 j ′ ( 0 ) = ∬ Ω [ ( ∂ u ∂ x ) ( ∂ v ∂ x ) + ( ∂ u ∂ y ) ( ∂ v ∂ y ) ] d x d y + ∫ Γ ( σ u v − g v ) d s j'(0) = \iint_{\Omega} \left[\left(\frac{\partial u}{\partial x}\right) \left(\frac{\partial v}{\partial x}\right) + \left(\frac{\partial u}{\partial y}\right) \left(\frac{\partial v}{\partial y}\right)\right] dx dy + \int_{\Gamma} \left(\sigma u v - g v\right) ds j(0)=Ω[(xu)(xv)+(yu)(yv)]dxdy+Γ(σuvgv)ds

v x u x + v y u y = ∇ u ⋅ ∇ v = ( u x , u y ) ⋅ ( v x , v y ) v_xu_x+v_yu_y=\nabla u\cdot \nabla v=(u_x,u_y)\cdot (v_x,v_y) vxux+vyuy=uv=(ux,uy)(vx,vy)

j ′ ( 0 ) = ∬ Ω ∇ u ⋅ ∇ v d x d y + ∫ Γ ( σ u v − g v ) d s j'(0) = \iint_{\Omega} \nabla u\cdot \nabla vdx dy + \int_{\Gamma} \left(\sigma u v - g v\right) ds j(0)=Ωuvdxdy+Γ(σuvgv)ds

利用格林第一公式可以得到 j ′ ( 0 ) = − ∬ Ω v Δ u d x d y + ∫ Γ ∂ u ∂ n v d s + ∫ Γ ( σ u v − g v ) d s j'(0)=-\iint_{\Omega} v\Delta udxdy+\int_{\Gamma}\frac{\partial u}{\partial n}vds+\int_{\Gamma} \left(\sigma u v - g v\right) ds j(0)=ΩvΔudxdy+Γnuvds+Γ(σuvgv)ds

如果我们取 v ∈ C 0 ∞ ( Ω ) v \in C_{0}^{\infty}(\Omega) vC0(Ω),即 v v v Ω \Omega Ω 内部光滑且在边界 Γ \Gamma Γ 上为零,那么边界项都将消失,因为 v ∣ Γ = 0 v|_{\Gamma} = 0 vΓ=0

因此,我们有
− ∬ Ω v Δ u d x d y = 0 -\iint_{\Omega} v\Delta udxdy = 0 ΩvΔudxdy=0
对于所有的 v ∈ C 0 ∞ ( Ω ) v \in C_{0}^{\infty}(\Omega) vC0(Ω)

由于 v v v 是任意的,根据基本引理(du Bois-Reymond Lemma),我们可以推导出
− Δ u = 0 ,  in  Ω -\Delta u = 0, \text{ in } \Omega Δu=0, in Ω
这就是所谓的拉普拉斯方程,表示 u u u Ω \Omega Ω 内部是调和函数。

当我们得到 − Δ u = 0 ,  in  Ω -\Delta u = 0, \text{ in } \Omega Δu=0, in Ω 之后,如果我们取 v ∈ C 0 ∞ ( ∂ Ω ) v \in C_{0}^{\infty}(\partial \Omega) vC0(Ω),即 v v v 在边界 ∂ Ω \partial \Omega Ω 上光滑且在 Ω \Omega Ω 的内部为零,我们可以进一步分析边界条件。

由于 v v v Ω \Omega Ω 的内部为零,内部的积分项 ∬ Ω v Δ u d x d y \iint_{\Omega} v\Delta udxdy ΩvΔudxdy 自然为零。因此,变分公式简化为:
j ′ ( 0 ) = ∫ Γ ∂ u ∂ n v d s + ∫ Γ ( σ u v − g v ) d s = 0 j'(0) = \int_{\Gamma}\frac{\partial u}{\partial n}vds + \int_{\Gamma} \left(\sigma u v - g v\right) ds = 0 j(0)=Γnuvds+Γ(σuvgv)ds=0

由于 v v v 是在边界 ∂ Ω \partial \Omega Ω 上任意的,我们可以推断出:
∂ u ∂ n + σ u − g = 0 ,  on  ∂ Ω \frac{\partial u}{\partial n} + \sigma u - g = 0, \text{ on } \partial \Omega nu+σug=0, on Ω

这就是所谓的诺依曼边界条件或第三类边界条件,它描述了函数 u u u 在边界上的导数(即法向导数)与 u u u 本身和给定函数 g g g 的关系。

  • 4
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值