Gamma矫正

目录

gamma校正定义:

gamma校正原理:

关于gamma的相关项目总结:

gamma校正定义:

      Gamma源于CRT(显示器/电视机)的响应曲线,即其亮度与输入电压的非线性关系。所谓伽玛校正就是对图像的伽玛曲线进行编辑,以对图像进行非线性色调编辑的方法,检出图像信号中的深色部分和浅色部分,并使两者比例增大,从而提高图像对比度效果。在图像照度不均匀的情况下,可以通过Gamma校正,将图像整体亮度提高或降低。

gamma校正原理:

假设图像中有一个像素A,值是 200 ,那么对这个像素进行校正必须执行如下步骤:

  1. 归一化 :将像素值转换为 0 ~ 1 之间的实数。 算法如下 : ( i + 0. 5)/256 这里包含 1 个除法和 1 个加法操作。对于像素 A 而言 , 其对应的归一化值为 0. 783203 。

  2. 预补偿 :根据公式 , 求出像素归一化后的 数据以 1 /gamma 为指数的对应值。这一步包含一个 求指数运算。若 gamma 值为 2. 2 , 则 1 /gamma 为 0. 454545 , 对归一化后的 A 值进行预补偿的结果就 是 0. 783203 ^0. 454545 = 0. 894872 。

  3. 反归一化 :将经过预补偿的实数值反变换为 0 ~ 255 之间的整数值。具体算法为 : f*256 - 0. 5 此步骤包含一个乘法和一个减法运算。续前 例 , 将 A 的预补偿结果 0. 894872 代入上式 , 得到 A 预补偿后对应的像素值为 228 , 这个 228 就是最后送 入显示器的数据。

  如上所述如果直接按公式编程的话,假设图像的分辨率为 800*600 ,对它进行 gamma 校正,需要执行 48 万个浮点数乘法、除法和指数运算。效率太低,根本达不到实时的效果。

  针对上述情况,提出了一种快速算法,如果能够确知图像的像素取值范围 , 例如 , 0 ~ 255 之间的整数 , 则图像中任何一个像素值只能 是 0 到 255 这 256 个整数中的某一个 ; 在 gamma 值 已知的情况下 ,0 ~ 255 之间的任一整数 , 经过“归一化、预补偿、反归一化”操作后 , 所对应的结果是唯一的 , 并且也落在 0 ~ 255 这个范围内。

        如前例 , 已知 gamma 值为 2. 2 , 像素 A 的原始值是 200 , 就可求得 经 gamma 校正后 A 对应的预补偿值为 228 。基于上述原理 , 我们只需为 0 ~ 255 之间的每个整数执行一次预补偿操作 , 将其对应的预补偿值存入一个预先建立的 gamma 校正查找表 , 就可以使用该表对任何像素值在 0 ~ 255 之 间的图像进行 gamma 校正。

关于gamma的相关项目总结:

     当我们在调试过程中,发现对比度不够时,最好优先调试gamma,拉对应lux下的gamma曲线。在以往项目中,发现当亮度差距不大,需要调整亮度时,拉取gamma也可以调整亮度,而且非常有效。所以总结两点拉gamma,一是对比度不够或过大,二是亮度差异。关于拉取gamma,怎么拉,这些还是经验性,只有通过项目去丰富。

参考链接:图像处理之gamma校正 - 淇淇宝贝 - 博客园

图像处理算法之Gamma校正_狂奔的CD的博客-CSDN博客_图像处理gamma校正

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值