本文主要介绍了 AI 大模型应用落地的需求、痛点、探索路径、成功案例、未来趋势及策略建议等方面,为企业在 AI 大模型应用领域提供了全面的指导和参考。
1、AI 大模型应用落地需求与痛点分析
驱动因素:政策牵引,如 2021 年以来相关政策聚焦安全、技术、应用落地等,营造利好环境;技术突破,深度学习、自然语言处理和多模态等创新技术为大模型提供支撑,提升业务赋能效率;转型需求,企业在数字化转型需求下,利用 AI 大模型提升运营效率和创新能力以应对市场竞争。
落地挑战:数据处理方面,工具不足、缺乏端到端解决方案且面临数据隐私安全难题;算力多元化和模型多样化带来适配困难和成本增加;全流程开发复杂,各环节协同不足,如 RAG 检索准确率低、软硬件适配难、上线后用户体验与安全问题等。
2、AI 大模型落地探索与成功路径洞察
落地尝试:市场上云厂商提供基础算力支持等;传统 AI 应用开发企业注重用户体验和行业理解;新兴大模型应用开发服务企业解决算力和模型适配问题,但现有方案多聚焦单一痛点,缺乏全流程和全方位能力。
能力建设:服务商需具备破解数据瓶颈能力,包括数据预处理、高质量数据提供、安全与扩展支持及全生命周期服务;多元算力适配能力,如支持算力多元化调度、硬件适配和优化方案;多模型匹配和精调能力,根据业务提供不同模型及适配精调;全流程打通及服务能力,涵盖需求梳理到运维各环节及定制化服务。
他山之石:以 Amazon Bedrock 和浪潮信息元脑企智 FPA 为例,前者通过 API 提供模型选择、定制和任务执行功能,后者提供全链路工具支持多元算力和算法调度,助力企业降低门槛、提升效能。
未来趋势预判及策略建议
趋势研判:企业将更关注 AI 大模型投入的 ROI;多模态大模型应用兴起,解决多维度业务问题,在信息丰富度、任务表现和人机交互方面优于单一模态模型;RAG 与知识图谱结合提升复杂查询处理性能,知识图谱能捕捉实体关系、提供上下文理解和个性化推荐;智能体向能力扩展与多智能体协作发展,提高工作效率、创新能力,构建智能生态系统。
**策略建议:企业应聚焦业务需求选模型,优化系统架构;评估数据,确保数据支持模型训练与应用;建立持续学习与迭代机制;探索模型与业务深度融合,优化决策;根据任务性质优化流程;做好技术选型与适配;培养 AI 人才团队。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。