AI Agent(人工智能体) 是 “以大语言模型为大脑驱动的系统,具备自主理解、感知、规划、记忆和使用工具的能力,能够自动化执行完成复杂任务的系统。AI Agent不同于传统的人工智能,它具备通过独立思考、调用工具去逐步完成给定目标的能力。
AI Agent Frameworks(人工智能体框架) 是旨在简化创建、部署和管理AI代理的软件平台。这些框架为开发人员提供了预构建的组件、抽象和工具,简化了复杂人工智能系统的开发。通过为人工智能代理开发中的常见挑战提供标准化方法,这些框架使开发人员能够专注于其应用程序的独特方面,而不是为每个项目重新发明轮子。
Agentic AI Systems(代理式人工智能系统) 是许多当代AI代理的基础,构建了自主或半自主的代理,可以通过结合大型语言模型(LLM)、工具和提示来完成复杂的任务。凭借其自然语言创造和理解能力充当系统的“大脑”。当人工智能必须与外界通信、获取数据或执行特定任务时,它可以利用外部资源或API等工具。精心构建的指令或问题作为提示提供,指导法学硕士的行动和认知过程。
人工智能最近对人工智能代理的兴趣激增,人工智能体是能够感知环境、做出决策并采取行动实现特定目标的自主软件实体。这些代理通常比传统的强化学习模型包含更先进的规划、推理和适应能力。为了构建这些,我们需要AI代理框架。在本文中,我们将讨论构建AI代理的前5个框架。
一、AI Agent的关键组件
人工智能代理框架的关键组件通常包括:
Agent架构: 用于定义AI Agent内部组织的结构,包括其决策过程、存储系统和交互能力。
环境接口: 用于将代理连接到其操作环境的工具,无论是模拟的还是现实世界的。
任务管理: 用于定义、分配和跟踪代理完成任务的系统。
通信协议: 实现代理之间以及代理与人类之间交互的方法。
学习机制:实现各种机器学习算法,使代理能够随着时间的推移提高其性能。
集成工具:用于将代理与外部数据源、API和其他软件系统连接的实用程序。
监控和调试:允许开发人员观察代理行为、跟踪性能和识别问题的功能。
二、AI Agent框架的重要性
人工智能代理框架在推进人工智能领域发挥着至关重要的作用,原因有几个:
加速开发: 通过提供预构建的组件和最佳实践,这些框架大大减少了创建复杂的人工智能代理所需的时间和精力。
标准化: 框架促进对共同挑战的一致方法,促进人工智能社区内的协作和知识共享。
可扩展性:许多框架旨在支持从简单的单代理应用程序到复杂的多代理环境的系统开发。
可访问性:通过抽象人工智能开发的许多复杂性,这些框架使更广泛的开发人员和研究人员更容易使用先进的人工智能技术。
创新: 通过处理人工智能代理开发的许多基础方面,框架使研究人员和开发人员能够专注于突破人工智能的极限。
在我们探索本文中的具体框架和工具时,每个框架和工具都提供了自己独特的方法来解决人工智能代理开发中的这些核心挑战。无论你是经验丰富的人工智能研究人员,还是刚刚开始探索基于代理的人工智能可能性的开发人员,了解这些框架对于保持在这个快速发展的领域的前沿至关重要。现在,让我们深入了解一些当今最著名的人工智能代理框架和工具:
三、Langchain
LangChain是一个强大且适应性强的框架,它使开发基于大型语言模型(LLM)的应用程序变得更加容易。得益于其广泛的工具和抽象,开发人员可以设计具有复杂推理、任务执行以及与外部数据源和API交互的强大AI代理。从根本上说,在漫长的谈话中保持上下文、整合外部信息和协调多步骤项目只是开发人员在与LLM合作时遇到的少数困难。LangChain解决了这些问题。由于其模块化架构,该框架很容易由各种组件组成,可用于各种目的。
LangChain的主要特点:
- 复杂工作流的链和代理
- 与多个LLM(OpenAI、Hugging Face等)集成
- 内存管理和上下文处理
- 及时的工程和模板支持
- 用于web抓取、API交互和数据库查询的内置工具
- 支持语义搜索和向量存储
- 用于结构化响应的可定制输出解析器
LangChain的优势
- 设计复杂代理行为的灵活性
- 易于与数据源和外部工具集成
- 活跃的社区,经常更新
- 大量文档和示例
- 语言无关的设计原则
- 从原型到生产就绪应用程序的可扩展性
LangChain的应用
- 对话式AI助手
- 自主任务完成系统
- 文档分析和问答代理
- 代码生成和分析工具
- 个性化推荐系统
- 自动化研究助理
- 内容摘要和生成
LangChain的生态系统一直在增长,定期引入新的社区贡献的元素、工具和连接器。这使得它成为希望尝试LLM驱动应用程序的新手和寻求创建适合生产的AI系统的经验丰富的开发人员的绝佳选择。LangChain始终处于不断变化的人工智能领域的前沿,采用新的模型和方法。由于其适应性强的架构,LangChain是人工智能开发的一种面向未来的选择,使使用它开发的应用程序能够轻松跟上语言模型技术的新发展。
四、LangGraph
LangGraph是LangChain的扩展,它允许使用大型语言模型(LLM)创建有状态的多参与者应用程序。它对于构建涉及规划、反思、反思和多智能体协调的复杂交互式人工智能系统特别有用。
LangGraph的主要特征
- 有状态的交互和工作流程
- 多智能体协调与沟通
- 与LangChain的组件和工具集成
- 基于图的代理交互表示
- 支持循环和非循环执行流
- 内置错误处理和重试机制
- 可定制的节点和边缘实现
- 先进的规划和反思能力
LangGraph的优点
- 支持创建更复杂、有状态的AI应用程序
- 与LangChain生态系统无缝集成
- 支持构建复杂的多代理系统
- 提供代理交互的可视化表示
- 允许动态、自适应的工作流程
- 促进自我改进的人工智能系统的发展
- 增强人工智能决策的可追溯性和可解释性
- 实现反射性AI行为
LangChain的应用
- 交互式讲故事引擎
- 复杂的决策系统
- 多步、有状态的聊天机器人
- 协作解决问题的环境
- 模拟多智能体生态系统
- 自动化工作流编排
- 高级游戏AI和非玩家角色(NPC)行为
- 能够提高自身性能的自反射人工智能系统
通过提供基于图的框架来规划和执行AI操作,LangGraph在LangChain奠定的基础上进行了扩展。
由于该框架强调规划、反思和反思,可以创建能够推理自己的过程、从以前的交互中学习并动态修改其方法的人工智能系统。这在创造人工智能方面具有巨大的潜力,可以逐步管理复杂和动态的情况并增强其能力。LangGraph的多智能体功能允许创建多个AI实体可以通信、协作甚至竞争的系统。这对于开发复杂的战略规划系统、复杂的环境模拟以及在各种应用中更具适应性和现实性的人工智能行为具有重要价值。
五、CrewAI
CrewAI是一个用于编排角色扮演AI代理的框架。它允许开发人员创建一个由人工智能代理组成的“团队”,每个代理都有特定的角色和职责,共同完成复杂的任务。该框架对于构建协作人工智能系统特别有用,这些系统可以解决需要不同专业知识和协调努力的多方面问题。
CrewAI的主要特点
- 基于角色的代理架构
- 动态任务规划和委派
- 复杂的代理间通信协议
- 分层团队结构
- 自适应任务执行机制
- 冲突解决系统
- 性能监控和优化工具
- 可扩展代理功能
- 场景模拟引擎
- API集成可增强代理功能
CrewAI的优势
- 通过角色专业化促进复杂任务的完成
- 可扩展以适应各种团队规模和任务复杂性
- 促进模块化和可重用的代理设计
- 通过代理协作实现紧急问题解决
- 通过集体智慧增强决策能力
- 创建更逼真的人类团队动态模拟
- 允许随着时间的推移进行自适应学习和改进
- 根据任务优先级优化资源分配
- 通过可追溯的决策过程提供可解释的人工智能
- 支持可定制的代理行为道德框架
CrewAI的应用
- 高级项目管理模拟
- 协作创意写作系统
- 城市规划或气候变化缓解等领域的复杂问题解决
- 业务战略制定和市场分析
- 跨学科的科研援助
- 应急响应计划和优化
- 适应性教育生态系统
- 医疗管理和协调系统
- 金融市场分析与预测
- 游戏AI和NPC生态系统开发
- 法律案件准备和分析
- 供应链优化
- 政治战略模拟
- 环境影响评价
CrewAI引入了一种基于角色的架构,该架构模仿了人类的组织结构,扩展了多智能体系统的概念。因此,可以组建能够解决需要各种技能和协调努力的具有挑战性的现实世界问题的人工智能团队。该框架通过强调自适应执行、代理间通信和动态作业分配,促进了人工智能系统的创建,这些系统可以管理不断变化的设置,并随着时间的推移提高其整体性能。这在模拟复杂的类人决策和协作过程方面尤其有效。
六、Microsoft Semantic Kernel
Microsoft Semantic Kernel(微软语义内核)旨在弥合传统软件开发和人工智能能力之间的差距。它特别关注将大型语言模型(LLM)集成到现有应用程序中。该框架为开发人员提供了在不彻底检修现有代码库的情况下整合人工智能功能的工具。SDK的轻量级特性和对多种编程语言的支持使其能够高度适应各种开发环境。它的编排器允许管理复杂的、多步骤的人工智能任务,使开发人员能够在他们的应用程序中创建复杂的人工智能驱动的工作流程。
微软语义内核的主要特征
- 将AI功能无缝集成到应用程序中
- 多语言支持(C#、Python、Java等)
- 用于管理复杂任务的编排器
- 内存管理和嵌入
- 灵活的AI模型选择和组合
- 强大的安全性和合规性功能
- 用于轻量级集成的SDK
微软语义内核的优势
- 企业级应用支持
- 人工智能模型选择和组合的灵活性
- 强大的安全和合规能力
- 与现有代码库无缝集成
- 简化人工智能开发流程
- 可扩展到各种应用程序大小
- 支持快速原型制作和部署
- 利用人工智能功能增强现有应用程序
- 允许在传统系统中逐步采用人工智能
- 提高代码的可重用性和可维护性
微软语义内核的应用
- 企业聊天机器人和虚拟助手
- 智能过程自动化
- 人工智能增强型生产力工具
- 应用程序的自然语言界面
- 个性化内容推荐系统
- 语义搜索与信息检索
- 自动化客户支持系统
- 智能文档处理
- 人工智能驱动的决策支持系统
- 语言翻译和本地化服务
- 情感分析与意见挖掘
- 智能调度和资源分配
- 工业环境中的预测性维护
- 人工智能增强型数据分析平台
- 个性化学习和辅导系统
通过提供强大的安全性和合规性功能,Microsoft Semantic Kernel解决了企业级应用程序的关键问题,使其适合在敏感或受监管的环境中部署。该框架在人工智能模型选择方面的灵活性允许开发人员选择和组合不同的模型,优化特定用例的性能和成本效益。Semantic Kernel强调无缝集成及其对逐步采用人工智能的支持,这使得它对希望利用人工智能功能增强现有软件生态系统的组织特别有价值。这种方法允许增量实现AI功能,降低了与大规模AI转换相关的风险和复杂性。
七、Microsoft AutoGen
Microsoft AutoGen 是一个开源框架,旨在构建高级AI代理和多代理系统。AutoGen由微软研究院开发,提供了一个灵活而强大的工具包,用于创建会话和任务完成的人工智能应用程序。它强调模块化、可扩展性和易用性,使开发人员能够高效地构建复杂的人工智能系统。
Microsoft AutoGen的主要功能
- 多智能体对话框架
- 支持大型语言模型和传统API
- 可定制的代理角色和行为
- 增强的会话记忆和上下文管理
- 内置错误处理和任务恢复机制
- 与外部工具和服务集成
- 灵活的会话流控制
- 支持人机交互
- 自定义代理实现的可扩展架构
- 全面的文档和示例
Microsoft AutoGen的优势
-
简化复杂多智能体系统的开发
-
支持为各种任务创建专门的代理
-
促进不同AI模型和服务的无缝集成
-
提高人工智能驱动对话的稳健性和可靠性
-
支持自主操作和人工监督
-
通过预构建组件缩短开发时间
-
实现快速原型制作和实验
-
为高级AI应用提供坚实的基础
-
鼓励社区驱动的发展和创新
-
提供从简单代理系统扩展到复杂代理系统的灵活性
Microsoft AutoGen的应用
- 先进的对话式人工智能系统
- 自动化编码助手和软件开发工具
- 复杂的问题解决和决策系统
- 智能辅导教育平台
- 科学文献分析研究助理
- 自动化客户支持和服务代理
- 创意写作和内容生成系统
- 数据分析和可视化助手
- 任务规划和执行代理
- 协作头脑风暴和构思工具
Microsoft AutoGen为创建智能代理提供了一个标准化的模块化框架,这是人工智能代理开发的重要一步。这种方法通过利用预组装部件和完善的设计模式,大大降低了创建复杂AI系统的准入门槛。AutoGen通过强调适应性和互操作性来促进快速的AI代理开发和迭代。它能够处理许多人工智能模型并提供标准化的接口,这使得创建可以在各种环境和工作中运行的极其灵活的代理成为可能。区分AutoGen的一个重要因素是它的多代理通信结构。因此,开发人员可以设计一个系统,在这个系统中,多个专业代理协同工作,解决复杂的问题或执行困难的工作。
八、AI Agent框架的比较
下表提供了本文中讨论的关键AI代理框架的高级比较。这种比较旨在突出每个框架的独特优势和重点领域,帮助开发人员和研究人员根据他们的特定需求选择最合适的工具。
开发人工智能代理库和框架是创建更强大、自主和自适应的人工智能系统的重要一步。讨论的每个框架都提供了独特的功能和优势,以适应各种复杂程度和用例。
LangChain专注于集成和灵活性,为创建语言模型驱动的代理提供了一种灵活直观的方法。通过扩展LangChain的功能,LangGraph可以创建更复杂、有状态和多代理的应用程序。CrewAI专注于创建基于角色的协作AI系统,模仿人类团队结构来解决复杂的挑战。微软的语义内核提供了强大的工具,将人工智能功能整合到业务应用程序中,强调采用率和安全性。最后,Microsoft AutoGen提供了一个适应性强的框架,可用于构建具有强大会话AI和任务完成能力的复杂多代理系统。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。