强化学习在广告参数上的应用(未完待续)

前言:本文是根据个人自己看的blog及日常工作对其进行的一些总结。因为才疏学浅,如有不对之处,请发邮件指点liedward@qq.com。非常感谢帮忙指正错误。

目录

一、业务说明:

二、数据模型抽象:

三、强化学习算法说明

四、例子:


一、业务说明:

搜索、推荐广告通常是一个多目标的需求。比如电商GMV公式通常如下:

Ctr:一个item对应该用户的点击率预测

Cvr:一个item对应该用户的转化率预测

price:该item的单价

Wi:流量分配权重

如上是对一条广告的排序公式。如果ctr权重过大,平台收益可能上升,但因为转化率权重较低,会导致商家ROI较低。同样如果注重ctr和cvr,客单价便宜则会使GMV下降。之前工业上通常会由人工测试,最终看整体GMV是否提升,但随机着不同人,不同品类精细化,所以我们要找到一套自动化、精细的方法调整以上参数。

 

二、数据模型抽象:

多目标优化求解问题。这里就用到了强化学习优化上述参数,从而使平台GMV最大化。

如果使用强化学习的思想,那么可以假设定义以下模块:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值