前言:本文是根据个人自己看的blog及日常工作对其进行的一些总结。因为才疏学浅,如有不对之处,请发邮件指点liedward@qq.com。非常感谢帮忙指正错误。
目录
一、业务说明:
搜索、推荐广告通常是一个多目标的需求。比如电商GMV公式通常如下:
Ctr:一个item对应该用户的点击率预测
Cvr:一个item对应该用户的转化率预测
price:该item的单价
Wi:流量分配权重
如上是对一条广告的排序公式。如果ctr权重过大,平台收益可能上升,但因为转化率权重较低,会导致商家ROI较低。同样如果注重ctr和cvr,客单价便宜则会使GMV下降。之前工业上通常会由人工测试,最终看整体GMV是否提升,但随机着不同人,不同品类精细化,所以我们要找到一套自动化、精细的方法调整以上参数。
二、数据模型抽象:
多目标优化求解问题。这里就用到了强化学习优化上述参数,从而使平台GMV最大化。
如果使用强化学习的思想,那么可以假设定义以下模块: