D3-bbox & R-CNN解读

R-CNN(Regions with CNN features)是一种用于目标检测的深度学习模型。它通过输入图像,使用选择性搜索找出候选区域,再利用CNN提取特征向量,并通过训练分类器进行物体位置和种类的回归。本文详细介绍了R-CNN的模型步骤,包括候选区域的选择、特征向量的提取和分类器的训练。
摘要由CSDN通过智能技术生成

bbox & R-CNN

bbox(Bounding Box) 是包含物体的最小矩形,该物体应在最小矩形内部。
其中,x、y代表着bbox左上角坐标(或其他固定点坐标),对应的w、h表示bbox的宽和高。

R-CNN(Regions with CNN features)

在这里插入图片描述
模型步骤:

  1. 输入图像

  2. 找出候选区域

  3. 通过CNN提取特征向量

  4. 训练分类器

(1)输入图像

进入CNN网络之前需要把候选区域统一成227 x 227的大小。有以下两种方法:

各向同性缩放,裁剪候选区域,边界用固定颜色背景(采用候选区域的像素颜色均值)填充到指定大小。
各向异性缩放,即直接缩放到指定大小,可能造成失真。

实验表明,各向异性缩放较好。

(2)候选区域

  • selective search 选择性搜索出建议区域
  • convert regions to boxes 将区域转化成框
  • botton-up segmentation 自底向上分割
  • merging regions at multiple scales 多尺度区域合并

在这里插入图片描述

(A)候选框内的图像(B)包含候选框的原图(C)各向同性缩放后的图像(D)各向异性缩放后的图像

(3)CNN提取特征向量

CNN作用:在候选区域提取特征向量,作为下一步分类器的输入,分类器回归出物体位置和种类。

文章采用AlexNet作为网络架构,去掉fc8层,softmax层替换成N+1神经元的输出层(N为物体,正样本;1为背景,负样本)。

(4)训练分类器

为什么使用SVM,而不是CNN过fc层直接softmax出来?

因为训练CNN时选取数据比较宽泛(样本不够准确),直接softmax出来效果不好。训练SVM时,使用的样本时有变换的。

修正bbox,对bbox做回归微调。

微调详解:https://blog.csdn.net/u011974639/article/details/78053203

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小吕同学吖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值