计算机视觉——bbox的格式简介

计算机视觉——bbox的格式简介


前提知识: 左上角为坐标原点

一、Itwh

全程:(left,top,weight,height)
在这里插入图片描述

二、xywh

全程:(x,y,weight,height)
x、y既可以指左上角的点也可以指中心点
coco数据集: [x,y,w,h],分别表示的是左上角横坐标、左上角纵坐标、宽度、高度
yolo数据集: [x,y,w,h],分别表示的是中心点横坐标、中心点纵坐标、宽度、高度

### 计算机视觉中的目标跟踪算法和技术 在计算机视觉领域,目标跟踪是一个重要的研究方向。为了实现高效的目标跟踪,通常会采用多种先进的技术和算法。 #### 基于特征匹配的方法 一种常见的方法是基于特征点检测和描述子匹配来识别并跟随移动物体。常用的技术包括SIFT (Scale-Invariant Feature Transform)[^1] 和 SURF (Speeded-Up Robust Features),这些技术能够提取图像中的稳定特征点,并通过比较不同帧之间的相似度来进行对象定位。 #### 卷积神经网络(CNNs)的应用 近年来,随着深度学习的发展,卷积神经网络被广泛应用于目标跟踪任务中。这类模型可以自动学习到有助于区分前景与背景的有效表征。例如,在Siamese Networks框架下训练两个共享权重的分支分别处理模板样本及其后的搜索区域;或者利用YOLOv3等实时性强的一阶段探测器直接预测边界框位置及类别概率分布[^2]。 #### 跟踪-by-Detection策略 此方案先借助分类器或回归器完成初始时刻感兴趣区域的选择工作,之后每新到来一帧就重新评估该区域内是否存在待跟丢物体现象发生——即所谓的在线更新机制。它允许系统动态调整参数以适应环境变化带来的挑战,从而提高鲁棒性和准确性。 ```python import cv2 from dlib import correlation_tracker as tracker def start_tracking(frame, bbox): trk = tracker() rect = dlib.rectangle(*bbox) trk.start_track(frame, rect) return trk while True: ret, frame = cap.read() if not ret: break trk.update(frame) pos = trk.get_position() pt1 = (int(pos.left()), int(pos.top())) pt2 = (int(pos.right()), int(pos.bottom())) cv2.rectangle(frame, pt1, pt2, color=(0, 255, 0), thickness=2) cv2.imshow('Tracking', frame) key = cv2.waitKey(1) & 0xFF if key == ord("q"):break ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

William.csj

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值