前言
我们都知道在深度学习这一领域当中,算法的更新换代是非常频繁的,特别是在CV领域。前短时间在很多人正在对引人注目的YOLO v4算法的解析中,YOLO v5代码也出现了(当然这里只是出现了代码,而且是否能被称之为v5还是引起了很多人的争议的,毕竟它在v4的基础上并没有修改他的backbone网络)。言归正传,虽然YOLO v4出现了一段时间了,但我在网上看了一些文章之后还是有些不懂的地方,因此“好记性不如烂笔头”,所以我就直接整理到我的博客里面。
思维导图
摘要
这里就直接用论文的摘要来开头,主要介绍了它使用的各种方法和开源代码 (https://github.com/AlexeyAB/darknet。)
有很多特征可以提高卷积神经网络(CNN)的准确性。需要在大型数据集上对这些特征的组合进行实际测试,并需要对结果进行理论证明。某些特征仅在某些模型上运行,并且仅在某些问题上运行,或者仅在小型数据集上运行;而某些特征(例如批归一化和残差连接)适用于大多数模型,任务和数据集。我们假设此类通用特征包括加权残差连接(WRC),跨阶段部分连接(CSP),交叉小批量标准化(CmBN),自对抗训练(SAT)和Mish激活。我们使用以下新功能:WRC,CSP,CmBN,SAT,Mish激活,马赛克数据增强,CmBN,DropBlock正则化和CIoU丢失,并结合其中的一些特征来实现最新的结果:在MS COCO数据集上利用Tesla V10以65 FPS的实时速度获得了43.5%的AP(65.7%AP50)。
1.介绍
其实YOLO v4相对于同期的其他算法来说可以用一句话总结:”速度差不多的精度