55%的云开发者在为开源做着贡献

在展示其对4300名云开发人员的调查结果时,DigitalOcean指出,55%的受访者参与了开源项目。这对于技术圈外人来说是一件很令人惊讶的事。

提供云基础设施软件和服务的DigitalOcean将其“Currents”调查的发布时间与其第五届年度Hacktoberfest项目的结束时间相结合。Hacktoberfest是它与GitHub和twilio共同主办的关于开源的一个项目。

根据调查结果,企业领导者似乎对开源的情感很复杂。虽然71%的受访者表示他们的雇主“希望他们使用开源软件作为日常开发工作的一部分”,但雇主不太支持开发人员为软件做出贡献而没有直接让公司受益。只有34%的受访者表示他们有时间从事与工作无关的开源项目。

该报告还揭示了一些令人鼓舞的迹象,即年轻的开发者更愿意贡献大约37%的开发人员表示,如果他们的公司给他们时间,他们会为开源做出更多贡献。此外,有44%的受访者表示他们没有贡献,因为他们觉得自己缺乏合适的技能,45%的受访者表示他们不知道如何开始——经验不足、可能更年轻的开发者似乎更愿意做出贡献。


DigitalOcean表示,总共有60%的具有五年或更少经验的开发人员为开源做出了贡献,而对于拥有更多经验的开发人员来说,这个数字“显著减少”。

印度的开发人员(68%)比其他任何国家更有可能为开源项目做出贡献。这可能部分归因于印度开发者的平均年龄较小。

做出贡献的动机包括提高编码技能、学习新技术和推进职业生涯的机会。还要一个不太明显的好处是成为社区一员。

其他调查结果包括,开源项目的主要编程语言是JavaScript(62%),其次是Python(52%)。占比超过20%的其他语言有PHP(29%)、Java(28%)和CSS(25%)。当被问及过去三年中哪些开源项目“最让你兴奋”时,用于构建UI的React.js JavaScript库被468次提及而名列前茅,其次是Kubernetes(335)、Docker(252)、Linux( 240)和Tensorflow(226)。

只有18%的员工表示他们的公司积极参与开源组织,例如:Apache Foundation、Node.js Foundation和Cloud Native Computing Foundation。四分之三的受访者表示他们的公司去年向这些组织捐赠了1000美元或更少。

毫不奇怪,高成本是导致公司减少开源捐赠和劳动力贡献的主要原因(38%)。之后是对内部开发的偏好(33%)和对所列组织缺乏了解(27%)。让人充满希望的是,29%的人表示他们的公司计划在未来为这些组织做出贡献。

当被问及五家领先的科技公司中哪一家在支持开源方面做得最多时,有53%的人选了谷歌,微软以23%的比例排名第二。其次是Facebook(10%)、亚马逊(4%)和苹果(1%)。虽然IBM没有出现在这份名单上,但它刚刚以340亿美元收购红帽(历史上第二大软件收购)应该会提升其在云软件方面已经广泛的开源贡献。



原文链接:

https://blog.digitalocean.com/digitalocean-currents-october-2018/


内容覆盖主流开源领域

640?wx_fmt=png 640?wx_fmt=png 640?wx_fmt=jpeg 640?wx_fmt=jpeg 640?wx_fmt=jpeg 640?wx_fmt=jpeg 640?wx_fmt=gif

投稿邮箱

openstackcn@sina.cn

640?wx_fmt=gif

640?wx_fmt=jpeg



深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值