【信号与系统】拉普拉斯变换

拉普拉斯变换



基本公式

F ( s ) = ∫ 0 + ∞ f ( τ ) e − s τ d τ = L [ f ( t ) ]   f ( t ) = 1 2 π j ∫ β − j ∞ β + j ∞ F ( s ) e s t d s = L − 1 [ F ( s ) ] F(s)=\int_{0}^{+\infty}f(\tau)e^{-s\tau}d\tau=\mathcal{L}[f(t)]\\\ \\ f(t)= \frac 1 {2\pi j} \int_{\beta-j\infty}^{\beta+j\infty} F(s)e^{st}ds=\mathcal L^{-1}[F(s)] F(s)=0+f(τ)esτdτ=L[f(t)] f(t)=2πj1βjβ+jF(s)estds=L1[F(s)]

常用公式

https://blog.csdn.net/lafea/article/details/118651638

基本性质

序号解释
线性 L [ α f 1 ( t ) + β f 2 ( t ) ] = α F 1 ( s ) + β F 2 ( s ) \mathcal{L}[\alpha f_1(t)+\beta f_2(t)]=\alpha F_1(s)+\beta F_2(s) L[αf1(t)+βf2(t)]=αF1(s)+βF2(s)
微分 L [ f ′ ( t ) ] = s F ( s ) − f ( 0 )   L [ f ′ ′ ( t ) ] = s 2 F ( s ) − s f ( 0 ) − f ′ ( 0 )   L [ f ( n ) ( t ) ] = s n F ( s ) − s n − 1 f ( 0 ) − s n − 2 f ′ ( 0 ) − ⋯ − f ( n − 1 ) ( 0 )   L [ t f ( t ) ] = − F ′ ( s )   L [ t n f ( t ) ] = ( − 1 ) n F ( n ) ( s )   L [ t f ′ ( t ) ] = − F ( s ) − s F ′ ( s )   L [ t f ′ ′ ( t ) ] = − ( 2 s F ( s ) + s 2 F ′ ( s ) − f ( 0 ) ) \mathcal L[f'(t)]=sF(s)-f(0)\\\ \\ \mathcal L[f''(t)]=s^2F(s)-sf(0)-f'(0)\\\ \\ \mathcal L[f^{(n)}(t)]=s^nF(s)-s^{n-1}f(0)-s^{n-2}f'(0)-\cdots-f^{(n-1)}(0)\\\ \\ \mathcal L [tf(t)]=-F'(s)\\\ \\ \mathcal L[t^nf(t)]=(-1)^nF^{(n)}(s)\\\ \\ \mathcal L[tf'(t)]=-F(s)-sF'(s)\\\ \\ \mathcal L[tf''(t)]=-(2sF(s)+s^2F'(s)-f(0)) L[f(t)]=sF(s)f(0) L[f(t)]=s2F(s)sf(0)f(0) L[f(n)(t)]=snF(s)sn1f(0)sn2f(0)f(n1)(0) L[tf(t)]=F(s) L[tnf(t)]=(1)nF(n)(s) L[tf(t)]=F(s)sF(s) L[tf(t)]=(2sF(s)+s2F(s)f(0))
积分 L [ ∫ 0 t f ( t ) d t ] = 1 s F ( s )   L [ ∫ 0 t ∫ 0 t ∫ 0 t ⋯ n   t i m e s f ( t ) d t ] = 1 s n F ( s )   L [ f ( t ) t ] = ∫ s ∞ F ( s ) d s   ⋆ ∫ 0 + ∞ f ( t ) t e − s t d t = ∫ s ∞ F ( s ) d s 取 s = 0 ∫ 0 + ∞ f ( t ) t d t = ∫ 0 ∞ F ( s ) d s \mathcal L[\int_0^tf(t)dt]=\frac 1 s F(s)\\\ \\ \mathcal L[\int_0^t\int_0^t\int_0^t\stackrel{n\space times}\cdots f(t)dt]=\frac 1 {s^n} F(s)\\\ \\ \mathcal L[\frac{f(t)} t]=\int _s^\infty F(s)ds\\\ \\ \star \int_0^{+\infty}\frac{f(t)} t e^{-st}dt=\int_s^\infty F(s) ds \\取s=0\\ \int_0^{+\infty}\frac{f(t)} t dt=\int_0^\infty F(s) ds L[0tf(t)dt]=s1F(s) L[0t0t0tn timesf(t)dt]=sn1F(s) L[tf(t)]=sF(s)ds 0+tf(t)estdt=sF(s)dss=00+tf(t)dt=0F(s)ds
时移 L [ f ( t − t 0 ) ] = e − s t 0 F ( s )   L − 1 [ e − s t 0 F ( s ) ] = f ( t − t 0 ) ⋅ u ( t − t 0 ) \mathcal L[f(t-t_0)]=e^{-st_0}F(s)\\\ \\ \mathcal L^{-1}[e^{-st_0}F(s)]=f(t-t_0)\cdot u(t-t_0) L[f(tt0)]=est0F(s) L1[est0F(s)]=f(tt0)u(tt0)
频移 L [ e ± a t f ( t ) ] = F ( s ∓ a ) \mathcal L[e^{\pm at}f(t)]=F(s\mp a) L[e±atf(t)]=F(sa)
尺度变换 L [ f ( a t ) ] = 1 a F ( s a ) \mathcal L[f(at)]=\frac 1 a F(\frac s a) L[f(at)]=a1F(as)
初值定理 lim ⁡ t → 0 + f ( t ) = f ( 0 + ) = lim ⁡ s → ∞ s F ( s )   若 F ( s ) 不 是 真 分 式 , 应 化 位 真 分 式 F ( s ) = F 1 ( s ) + K   则 f ( 0 + ) = lim ⁡ s → ∞ s F 1 ( s ) \lim_{t\to 0_+}f(t)=f(0_+)=\lim_{s\to \infty} sF(s) \\\ \\ 若F(s)不是真分式,应化位真分式F(s)=F_1(s)+K\\\ \\ 则 f(0_+)=\lim_{s\to \infty}sF_1(s) t0+limf(t)=f(0+)=slimsF(s) F(s)F(s)=F1(s)+K f(0+)=slimsF1(s) K在某种程度上代表了跳变量 δ \delta δ,所谓初值是指除去了跳变量之外的初值
终值定理 若 s F ( s ) 在 右 半 平 面 和 j ω 轴 ( 原 点 除 外 ) 上 无 极 点 , 则   lim ⁡ t → ∞ f ( t ) = lim ⁡ s → 0 s F ( s ) 若sF(s)在右半平面和j\omega轴(原点除外)上无极点,则\\\ \\ \lim_{t\to \infty}f(t)=\lim_{s\to 0}sF(s) sF(s)jω tlimf(t)=s0limsF(s)

其他公式

卷积公式

L [ f 1 ∗ f 2 ] = F 1 ( s ) ⋅ F 2 ( s )     L [ f 1 ⋅ f 2 ] = 1 2 π j F 1 ( s ) ∗ F 2 ( s )   f 1 e a t ∗ f 2 e a t = e a t f 1 ∗ f 2 \mathcal L[f_1*f_2]=F_1(s)\cdot F_2(s)\\\ \\\ \mathcal L[f_1\cdot f_2]=\frac 1 {2\pi j}F_1(s)*F_2(s)\\\ \\ f_1e^{at}*f_2e^{at}=e^{at}f_1*f_2 L[f1f2]=F1(s)F2(s)  L[f1f2]=2πj1F1(s)F2(s) f1eatf2eat=eatf1f2

单边抽样信号的拉普拉斯变换

L [ f s ( t ) ] = ∫ 0 ∞ ∑ 0 ∞ f ( n T ) δ ( t − n T ) e − s t d t = ∑ n = 0 ∞ f ( n T ) e − n s T   \mathcal L[f_s(t)]=\int_0^\infty \sum_0^\infty f(nT)\delta(t-nT)e^{-st}dt=\sum_{n=0}^\infty f(nT)e^{-nsT}\\\ \\ L[fs(t)]=00f(nT)δ(tnT)estdt=n=0f(nT)ensT 

周期函数的拉普拉斯变换

L [ ∑ n = 0 ∞ f ( t − n T ) ] = F 1 ( s ) 1 − e − s T   F 1 ( s ) 为 第 一 个 周 期 的 拉 普 拉 斯 变 换 \mathcal L[\sum_{n=0}^\infty f(t-nT)]=\frac {F_1(s)}{1-e^{-sT}}\\\ \\ F_1(s)为第一个周期的拉普拉斯变换 L[n=0f(tnT)]=1esTF1(s) F1(s)

50%周期矩形波正弦全波整流脉冲
1 − e − s τ s ( 1 − e − s T ) \frac {1-e^{-s\tau}}{s(1-e^{-sT})} s(1esT)1esτ ω s 2 + ω 2 1 + e − s T / 2 1 − e − s T \frac \omega{s^2+\omega^2}\frac{1+e^{-sT/2}}{1-e^{-sT}} s2+ω2ω1esT1+esT/2 重复周期为T/2

一些方法与技巧

利用拉普拉斯变换计算微分方程解的各个部分

先 进 行 冲 激 量 匹 配 法 求 出 解   r   在 r ( 0 ) , ( t = 0 ) 时 候 的 冲 激 量   { ① 算   r z i   零 输 入 响 应 : { 等 式 右 边 为 0 等 式 左 边 代 入   r ( 0 − )   ② 算   r z s   零 输 入 响 应 : { 等 式 右 边 代 入 输 入 等 式 左 边 带 入   r ( 0 − ) = 0   ③ 算   r   全 响 应 : { 等 式 右 边 代 入 输 入 等 式 左 边 带 入   r ( 0 − )   最 后 的 全 解 r 要 加 上 冲 激 量 匹 配 法 求 出 的 冲 激 量 先进行冲激量匹配法\\求出解~r ~在r(0),(t=0)时候的冲激量\\\ \\ \left \{ \begin{array}{c} ①算~r_{zi}~零输入响应: \left \{ \begin{array}{c} 等式右边为0 \\ 等式左边代入~r(0_{-}) \end{array} \right. \\\ \\ ②算~r_{zs}~零输入响应: \left \{ \begin{array}{c} 等式右边代入输入 \\ 等式左边带入~r(0_{-})=0 \end{array} \right. \\\ \\ ③算~r~全响应: \left \{ \begin{array}{c} 等式右边代入输入 \\ 等式左边带入~r(0_{-}) \end{array} \right. \end{array} \right.\\\ \\ 最后的全解r要加上冲激量匹配法求出的冲激量  r r(0)(t=0)  rzi {0 r(0)  rzs { r(0)=0  r { r(0) r
注 意 : ① 若 冲 激 量 有 δ ′ ′ ′ , δ ′ ′ 等 , 化 为 积 分 方 程 后 再 做 .   ② 变 换 域 方 法 无 法 很 好 区 分 自 由 响 应 与 强 迫 响 应 一 般 来 说 , 全 解 中 含 特 征 根 的 指 数 部 分 为 自 由 相 应 , 反 之 为 强 迫 响 应 但 如 果 微 分 方 程 特 解 本 身 含 有 带 特 征 根 的 指 数 部 分 则 无 法 通 过 变 换 域 方 法 区 分   ③ 变 换 域 方 法 不 涉 及 r ( 0 + ) 注意:\\ ①若冲激量有 \delta''',\delta''等,化为积分方程后再做.\\\ \\ ②变换域方法无法很好区分自由响应与强迫响应\\ 一般来说,全解中含特征根的指数部分为自由相应,反之为强迫响应\\ 但如果微分方程特解本身含有带特征根的指数部分\\则无法通过变换域方法区分\\\ \\ ③变换域方法不涉及r(0_{+}) δ,δ.  r(0+)
当 然 , 冲 击 量 匹 配 法 仍 然 属 于 是 时 域 的 方 法 , 求 跳 变 量 可 以 有 更 快 的 方 法 当 得 到 未 化 为 真 分 式 的 F ( s ) 时 , 直 接 带 入 s = ∞ 所 得 到 的 量 设 为 A , 则 在 用 各 种 方 法 求 出 拉 氏 逆 变 换 后 , 加 上 A δ ( t ) 即 可   这 种 方 法 同 时 说 明 了 , 如 果 F ( s ) 分 母 最 高 次 比 分 子 高 , 则 求 逆 变 换 后 不 可 能 有 跳 变 量 \color{red}当然,冲击量匹配法仍然属于是时域的方法,求跳变量可以有更快的方法\\ 当得到未化为真分式的F(s)时,直接带入s=\infty\\ 所得到的量设为A,则在用各种方法求出拉氏逆变换后,加上\\ A\delta(t)即可\\\ \\ 这种方法同时说明了,如果F(s)分母最高次比分子高,\\则求逆变换后不可能有跳变量\color{black} F(s)s=AAδ(t) F(s)

时域s域
δ ( t ) \delta(t) δ(t)1
δ ′ ( t ) \delta'(t) δ(t)s
δ ′ ′ ( t ) \delta''(t) δ(t) s 2 s^2 s2
δ ( n ) ( t ) \delta^{(n)}(t) δ(n)(t) s n s^{n} sn

关于系统的稳定性

在这里插入图片描述

写出电路的s域等效模型

在这里插入图片描述

几个经典的解拉氏逆变换的技巧

在这里插入图片描述

对于系统函数H(s)

冲 激 响 应 的 拉 氏 变 换 当 有 输 入 输 出 , 叫 转 移 函 数 输 入 输 出 在 同 一 个 端 口 , 叫 策 动 点 函 数   H ( s ) = R z s ( s ) E ( s )   系 统 函 数 零 极 点 对 应 自 由 响 应 分 量 但 可 能 由 于 零 极 点 的 相 消 导 致 丢 失 信 息 冲激响应的拉氏变换\\ 当有输入输出,叫转移函数\\ 输入输出在同一个端口,叫策动点函数\\\ \\ H(s)=\frac{R_{zs}(s)}{E(s)}\\\ \\ 系统函数零极点对应自由响应分量\\ 但可能由于零极点的相消导致丢失信息  H(s)=E(s)Rzs(s) 
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

H 1 ⋅ H 2 为 开 环 传 递 函 数 由 上 可 以 看 到 , 为 负 反 馈 时 , H ( s ) < H 1 ( s ) 为 正 反 馈 时 , 开 环 传 递 函 数 前 要 取 负 号 H_1\cdot H_2为开环传递函数\\ 由上可以看到,为负反馈时,H(s)<H_1(s)\\ 为正反馈时,开环传递函数前要取负号 H1H2H(s)<H1(s)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值