拉普拉斯变换
文章目录
基本公式
F ( s ) = ∫ 0 + ∞ f ( τ ) e − s τ d τ = L [ f ( t ) ] f ( t ) = 1 2 π j ∫ β − j ∞ β + j ∞ F ( s ) e s t d s = L − 1 [ F ( s ) ] F(s)=\int_{0}^{+\infty}f(\tau)e^{-s\tau}d\tau=\mathcal{L}[f(t)]\\\ \\ f(t)= \frac 1 {2\pi j} \int_{\beta-j\infty}^{\beta+j\infty} F(s)e^{st}ds=\mathcal L^{-1}[F(s)] F(s)=∫0+∞f(τ)e−sτdτ=L[f(t)] f(t)=2πj1∫β−j∞β+j∞F(s)estds=L−1[F(s)]
常用公式
https://blog.csdn.net/lafea/article/details/118651638
基本性质
序号 | 解释 |
---|---|
线性 | L [ α f 1 ( t ) + β f 2 ( t ) ] = α F 1 ( s ) + β F 2 ( s ) \mathcal{L}[\alpha f_1(t)+\beta f_2(t)]=\alpha F_1(s)+\beta F_2(s) L[αf1(t)+βf2(t)]=αF1(s)+βF2(s) |
微分 | L [ f ′ ( t ) ] = s F ( s ) − f ( 0 ) L [ f ′ ′ ( t ) ] = s 2 F ( s ) − s f ( 0 ) − f ′ ( 0 ) L [ f ( n ) ( t ) ] = s n F ( s ) − s n − 1 f ( 0 ) − s n − 2 f ′ ( 0 ) − ⋯ − f ( n − 1 ) ( 0 ) L [ t f ( t ) ] = − F ′ ( s ) L [ t n f ( t ) ] = ( − 1 ) n F ( n ) ( s ) L [ t f ′ ( t ) ] = − F ( s ) − s F ′ ( s ) L [ t f ′ ′ ( t ) ] = − ( 2 s F ( s ) + s 2 F ′ ( s ) − f ( 0 ) ) \mathcal L[f'(t)]=sF(s)-f(0)\\\ \\ \mathcal L[f''(t)]=s^2F(s)-sf(0)-f'(0)\\\ \\ \mathcal L[f^{(n)}(t)]=s^nF(s)-s^{n-1}f(0)-s^{n-2}f'(0)-\cdots-f^{(n-1)}(0)\\\ \\ \mathcal L [tf(t)]=-F'(s)\\\ \\ \mathcal L[t^nf(t)]=(-1)^nF^{(n)}(s)\\\ \\ \mathcal L[tf'(t)]=-F(s)-sF'(s)\\\ \\ \mathcal L[tf''(t)]=-(2sF(s)+s^2F'(s)-f(0)) L[f′(t)]=sF(s)−f(0) L[f′′(t)]=s2F(s)−sf(0)−f′(0) L[f(n)(t)]=snF(s)−sn−1f(0)−sn−2f′(0)−⋯−f(n−1)(0) L[tf(t)]=−F′(s) L[tnf(t)]=(−1)nF(n)(s) L[tf′(t)]=−F(s)−sF′(s) L[tf′′(t)]=−(2sF(s)+s2F′(s)−f(0)) |
积分 | L [ ∫ 0 t f ( t ) d t ] = 1 s F ( s ) L [ ∫ 0 t ∫ 0 t ∫ 0 t ⋯ n t i m e s f ( t ) d t ] = 1 s n F ( s ) L [ f ( t ) t ] = ∫ s ∞ F ( s ) d s ⋆ ∫ 0 + ∞ f ( t ) t e − s t d t = ∫ s ∞ F ( s ) d s 取 s = 0 ∫ 0 + ∞ f ( t ) t d t = ∫ 0 ∞ F ( s ) d s \mathcal L[\int_0^tf(t)dt]=\frac 1 s F(s)\\\ \\ \mathcal L[\int_0^t\int_0^t\int_0^t\stackrel{n\space times}\cdots f(t)dt]=\frac 1 {s^n} F(s)\\\ \\ \mathcal L[\frac{f(t)} t]=\int _s^\infty F(s)ds\\\ \\ \star \int_0^{+\infty}\frac{f(t)} t e^{-st}dt=\int_s^\infty F(s) ds \\取s=0\\ \int_0^{+\infty}\frac{f(t)} t dt=\int_0^\infty F(s) ds L[∫0tf(t)dt]=s1F(s) L[∫0t∫0t∫0t⋯n timesf(t)dt]=sn1F(s) L[tf(t)]=∫s∞F(s)ds ⋆∫0+∞tf(t)e−stdt=∫s∞F(s)ds取s=0∫0+∞tf(t)dt=∫0∞F(s)ds |
时移 | L [ f ( t − t 0 ) ] = e − s t 0 F ( s ) L − 1 [ e − s t 0 F ( s ) ] = f ( t − t 0 ) ⋅ u ( t − t 0 ) \mathcal L[f(t-t_0)]=e^{-st_0}F(s)\\\ \\ \mathcal L^{-1}[e^{-st_0}F(s)]=f(t-t_0)\cdot u(t-t_0) L[f(t−t0)]=e−st0F(s) L−1[e−st0F(s)]=f(t−t0)⋅u(t−t0) |
频移 | L [ e ± a t f ( t ) ] = F ( s ∓ a ) \mathcal L[e^{\pm at}f(t)]=F(s\mp a) L[e±atf(t)]=F(s∓a) |
尺度变换 | L [ f ( a t ) ] = 1 a F ( s a ) \mathcal L[f(at)]=\frac 1 a F(\frac s a) L[f(at)]=a1F(as) |
初值定理 | lim t → 0 + f ( t ) = f ( 0 + ) = lim s → ∞ s F ( s ) 若 F ( s ) 不 是 真 分 式 , 应 化 位 真 分 式 F ( s ) = F 1 ( s ) + K 则 f ( 0 + ) = lim s → ∞ s F 1 ( s ) \lim_{t\to 0_+}f(t)=f(0_+)=\lim_{s\to \infty} sF(s) \\\ \\ 若F(s)不是真分式,应化位真分式F(s)=F_1(s)+K\\\ \\ 则 f(0_+)=\lim_{s\to \infty}sF_1(s) t→0+limf(t)=f(0+)=s→∞limsF(s) 若F(s)不是真分式,应化位真分式F(s)=F1(s)+K 则f(0+)=s→∞limsF1(s) K在某种程度上代表了跳变量 δ \delta δ,所谓初值是指除去了跳变量之外的初值 |
终值定理 | 若 s F ( s ) 在 右 半 平 面 和 j ω 轴 ( 原 点 除 外 ) 上 无 极 点 , 则 lim t → ∞ f ( t ) = lim s → 0 s F ( s ) 若sF(s)在右半平面和j\omega轴(原点除外)上无极点,则\\\ \\ \lim_{t\to \infty}f(t)=\lim_{s\to 0}sF(s) 若sF(s)在右半平面和jω轴(原点除外)上无极点,则 t→∞limf(t)=s→0limsF(s) |
其他公式
卷积公式
L [ f 1 ∗ f 2 ] = F 1 ( s ) ⋅ F 2 ( s ) L [ f 1 ⋅ f 2 ] = 1 2 π j F 1 ( s ) ∗ F 2 ( s ) f 1 e a t ∗ f 2 e a t = e a t f 1 ∗ f 2 \mathcal L[f_1*f_2]=F_1(s)\cdot F_2(s)\\\ \\\ \mathcal L[f_1\cdot f_2]=\frac 1 {2\pi j}F_1(s)*F_2(s)\\\ \\ f_1e^{at}*f_2e^{at}=e^{at}f_1*f_2 L[f1∗f2]=F1(s)⋅F2(s) L[f1⋅f2]=2πj1F1(s)∗F2(s) f1eat∗f2eat=eatf1∗f2
单边抽样信号的拉普拉斯变换
L [ f s ( t ) ] = ∫ 0 ∞ ∑ 0 ∞ f ( n T ) δ ( t − n T ) e − s t d t = ∑ n = 0 ∞ f ( n T ) e − n s T \mathcal L[f_s(t)]=\int_0^\infty \sum_0^\infty f(nT)\delta(t-nT)e^{-st}dt=\sum_{n=0}^\infty f(nT)e^{-nsT}\\\ \\ L[fs(t)]=∫0∞0∑∞f(nT)δ(t−nT)e−stdt=n=0∑∞f(nT)e−nsT
周期函数的拉普拉斯变换
L [ ∑ n = 0 ∞ f ( t − n T ) ] = F 1 ( s ) 1 − e − s T F 1 ( s ) 为 第 一 个 周 期 的 拉 普 拉 斯 变 换 \mathcal L[\sum_{n=0}^\infty f(t-nT)]=\frac {F_1(s)}{1-e^{-sT}}\\\ \\ F_1(s)为第一个周期的拉普拉斯变换 L[n=0∑∞f(t−nT)]=1−e−sTF1(s) F1(s)为第一个周期的拉普拉斯变换
50%周期矩形波 | 正弦全波整流脉冲 |
---|---|
1 − e − s τ s ( 1 − e − s T ) \frac {1-e^{-s\tau}}{s(1-e^{-sT})} s(1−e−sT)1−e−sτ | ω s 2 + ω 2 1 + e − s T / 2 1 − e − s T \frac \omega{s^2+\omega^2}\frac{1+e^{-sT/2}}{1-e^{-sT}} s2+ω2ω1−e−sT1+e−sT/2 重复周期为T/2 |
一些方法与技巧
利用拉普拉斯变换计算微分方程解的各个部分
先
进
行
冲
激
量
匹
配
法
求
出
解
r
在
r
(
0
)
,
(
t
=
0
)
时
候
的
冲
激
量
{
①
算
r
z
i
零
输
入
响
应
:
{
等
式
右
边
为
0
等
式
左
边
代
入
r
(
0
−
)
②
算
r
z
s
零
输
入
响
应
:
{
等
式
右
边
代
入
输
入
等
式
左
边
带
入
r
(
0
−
)
=
0
③
算
r
全
响
应
:
{
等
式
右
边
代
入
输
入
等
式
左
边
带
入
r
(
0
−
)
最
后
的
全
解
r
要
加
上
冲
激
量
匹
配
法
求
出
的
冲
激
量
先进行冲激量匹配法\\求出解~r ~在r(0),(t=0)时候的冲激量\\\ \\ \left \{ \begin{array}{c} ①算~r_{zi}~零输入响应: \left \{ \begin{array}{c} 等式右边为0 \\ 等式左边代入~r(0_{-}) \end{array} \right. \\\ \\ ②算~r_{zs}~零输入响应: \left \{ \begin{array}{c} 等式右边代入输入 \\ 等式左边带入~r(0_{-})=0 \end{array} \right. \\\ \\ ③算~r~全响应: \left \{ \begin{array}{c} 等式右边代入输入 \\ 等式左边带入~r(0_{-}) \end{array} \right. \end{array} \right.\\\ \\ 最后的全解r要加上冲激量匹配法求出的冲激量
先进行冲激量匹配法求出解 r 在r(0),(t=0)时候的冲激量 ⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧①算 rzi 零输入响应:{等式右边为0等式左边代入 r(0−) ②算 rzs 零输入响应:{等式右边代入输入等式左边带入 r(0−)=0 ③算 r 全响应:{等式右边代入输入等式左边带入 r(0−) 最后的全解r要加上冲激量匹配法求出的冲激量
注
意
:
①
若
冲
激
量
有
δ
′
′
′
,
δ
′
′
等
,
化
为
积
分
方
程
后
再
做
.
②
变
换
域
方
法
无
法
很
好
区
分
自
由
响
应
与
强
迫
响
应
一
般
来
说
,
全
解
中
含
特
征
根
的
指
数
部
分
为
自
由
相
应
,
反
之
为
强
迫
响
应
但
如
果
微
分
方
程
特
解
本
身
含
有
带
特
征
根
的
指
数
部
分
则
无
法
通
过
变
换
域
方
法
区
分
③
变
换
域
方
法
不
涉
及
r
(
0
+
)
注意:\\ ①若冲激量有 \delta''',\delta''等,化为积分方程后再做.\\\ \\ ②变换域方法无法很好区分自由响应与强迫响应\\ 一般来说,全解中含特征根的指数部分为自由相应,反之为强迫响应\\ 但如果微分方程特解本身含有带特征根的指数部分\\则无法通过变换域方法区分\\\ \\ ③变换域方法不涉及r(0_{+})
注意:①若冲激量有δ′′′,δ′′等,化为积分方程后再做. ②变换域方法无法很好区分自由响应与强迫响应一般来说,全解中含特征根的指数部分为自由相应,反之为强迫响应但如果微分方程特解本身含有带特征根的指数部分则无法通过变换域方法区分 ③变换域方法不涉及r(0+)
当
然
,
冲
击
量
匹
配
法
仍
然
属
于
是
时
域
的
方
法
,
求
跳
变
量
可
以
有
更
快
的
方
法
当
得
到
未
化
为
真
分
式
的
F
(
s
)
时
,
直
接
带
入
s
=
∞
所
得
到
的
量
设
为
A
,
则
在
用
各
种
方
法
求
出
拉
氏
逆
变
换
后
,
加
上
A
δ
(
t
)
即
可
这
种
方
法
同
时
说
明
了
,
如
果
F
(
s
)
分
母
最
高
次
比
分
子
高
,
则
求
逆
变
换
后
不
可
能
有
跳
变
量
\color{red}当然,冲击量匹配法仍然属于是时域的方法,求跳变量可以有更快的方法\\ 当得到未化为真分式的F(s)时,直接带入s=\infty\\ 所得到的量设为A,则在用各种方法求出拉氏逆变换后,加上\\ A\delta(t)即可\\\ \\ 这种方法同时说明了,如果F(s)分母最高次比分子高,\\则求逆变换后不可能有跳变量\color{black}
当然,冲击量匹配法仍然属于是时域的方法,求跳变量可以有更快的方法当得到未化为真分式的F(s)时,直接带入s=∞所得到的量设为A,则在用各种方法求出拉氏逆变换后,加上Aδ(t)即可 这种方法同时说明了,如果F(s)分母最高次比分子高,则求逆变换后不可能有跳变量
时域 | s域 |
---|---|
δ ( t ) \delta(t) δ(t) | 1 |
δ ′ ( t ) \delta'(t) δ′(t) | s |
δ ′ ′ ( t ) \delta''(t) δ′′(t) | s 2 s^2 s2 |
δ ( n ) ( t ) \delta^{(n)}(t) δ(n)(t) | s n s^{n} sn |
关于系统的稳定性
写出电路的s域等效模型
几个经典的解拉氏逆变换的技巧
对于系统函数H(s)
冲
激
响
应
的
拉
氏
变
换
当
有
输
入
输
出
,
叫
转
移
函
数
输
入
输
出
在
同
一
个
端
口
,
叫
策
动
点
函
数
H
(
s
)
=
R
z
s
(
s
)
E
(
s
)
系
统
函
数
零
极
点
对
应
自
由
响
应
分
量
但
可
能
由
于
零
极
点
的
相
消
导
致
丢
失
信
息
冲激响应的拉氏变换\\ 当有输入输出,叫转移函数\\ 输入输出在同一个端口,叫策动点函数\\\ \\ H(s)=\frac{R_{zs}(s)}{E(s)}\\\ \\ 系统函数零极点对应自由响应分量\\ 但可能由于零极点的相消导致丢失信息
冲激响应的拉氏变换当有输入输出,叫转移函数输入输出在同一个端口,叫策动点函数 H(s)=E(s)Rzs(s) 系统函数零极点对应自由响应分量但可能由于零极点的相消导致丢失信息
H 1 ⋅ H 2 为 开 环 传 递 函 数 由 上 可 以 看 到 , 为 负 反 馈 时 , H ( s ) < H 1 ( s ) 为 正 反 馈 时 , 开 环 传 递 函 数 前 要 取 负 号 H_1\cdot H_2为开环传递函数\\ 由上可以看到,为负反馈时,H(s)<H_1(s)\\ 为正反馈时,开环传递函数前要取负号 H1⋅H2为开环传递函数由上可以看到,为负反馈时,H(s)<H1(s)为正反馈时,开环传递函数前要取负号