多分支配电网故障测距的主-分区段行波分析【附代码】

📈 算法与建模领域的探索者 | 专注数据分析与智能模型设计
✨ 擅长算法、建模、数据分析
💡 matlab、python、仿真

✅ 具体问题可以私信或查看文章底部二维码

✅ 感恩科研路上每一位志同道合的伙伴!

(1)行波的基础理论与多分支配电网中的行波传播分析

行波是电力系统中瞬时电压或电流的波动,其产生与传播对于故障检测与定位至关重要。行波通常是由配电网中的故障或开关操作引发的瞬时扰动,且行波传播速度受到配电网结构、导线参数和故障特性等因素的影响。在配电网中,由于系统结构复杂,多分支和多节点的存在使得行波在传播过程中可能出现反射、折射、波速变化等现象,从而增加了行波故障测距的难度。

对于多分支配电网而言,行波不仅受到单一电流路径的影响,还要考虑到分支之间的相互作用。行波在配电网中的传播路径不仅依赖于线路的长度,还受到负荷、开关状态、分支数目、线路接头位置等因素的制约。因此,理解行波传播的基本规律,尤其是行波的传播速度、反射和折射机制,成为了进行精确故障测距的前提。

在多分支配电网中,行波的传播并非简单的一维传播,而是复杂的多路径传播过程。每个分支的电流、电压波形都会受到其他分支的影响,导致波形畸变。这种复杂的传播现象增加了行波测距的难度,尤其是在处理多分支配电网中的故障时,如何从多个可能的波传播路径中准确判断故障位置,成为关键技术难点。

(2)行波法故障测距的关键技术分析

行波测距技术的核心问题是如何精确地确定故障发生的位置。一般来说,行波测距技术可分为单端法和双端法两种主要方法。单端法是通过在故障点的一端探测到的行波信号来推算故障位置,而双端法则是通过同时获取故障点前后两个测量端口的行波信号,并利用两者的时差来推算故障位置。

在多分支配电网的行波测距中,单端法的应用受到较大限制,原因在于多分支网结构带来的信号反射和传播路径的多样性。而双端法则更具优势,它可以利用两端之间的时差关系,综合分析多个路径的传播信息,从而提高故障定位的准确度。然而,双端法在实际应用中存在数据同步问题,特别是在大规模配电网中,如何保证两个测量端的数据能够精确同步,对于提高测距精度至关重要。

此外,行波测距精度还受到多个因素的影响,包括行波波速的准确确定、采样频率的选择以及线路的不同阻抗特性。行波波速的准确性直接影响故障位置的计算精度。在多分支配电网中,行波传播速度不仅取决于线路本身的电气特性,还与线路的结构、导线的类型及其负载条件密切相关。因此,如何精确地计算和估算行波波速,成为提高故障测距精度的关键。

(3)基于初始行波时域关系的网络式故障测距算法

为了应对多分支配电网中行波传播的复杂性,本文提出了一种基于初始行波时域关系的网络式故障测距新算法。该算法的核心思想是通过分析不同分支之间的初始行波时差关系,构建网络特征时差矩阵与真实时差矩阵。通过对比这两个时差矩阵,可以判断故障发生的网络区段,从而准确定位故障点。

具体而言,网络式故障测距算法首先通过收集多个测量点的数据,并使用小波变换技术提取行波的到达时刻。小波变换能够有效地从复杂的信号中分离出有用的暂态行波信息,避免了其他噪声或干扰信号的影响。提取出的行波到达时刻可以用来构建时差矩阵,该矩阵反映了各测量点间行波到达的时间差异。这些时差数据为后续的故障定位提供了重要依据。

在确定了各测量点的时差关系后,算法通过构建网络区段的时差矩阵与真实时差矩阵进行比较。通过这种方法,可以识别出故障发生的准确区域,并进一步推算故障发生的具体位置。该算法具有较高的鲁棒性,能够适应不同类型的故障、故障位置以及不同线路参数的变化。通过仿真实验的验证,结果表明该算法能够在多分支配电网中提供较为准确的故障测距结果,尤其在处理间歇性故障和过渡电阻故障时,依然能够保持较高的测距精度。

此外,网络式故障测距算法具有较强的适应性,可以应对配电网中多种复杂故障类型,包括短路故障、开路故障以及由外部因素引发的暂态故障等。该算法不仅提升了测距精度,还增强了系统在多变环境下的适应能力和可靠性。通过与传统方法的对比,结果显示,本文提出的算法能够显著提高测距的准确性,尤其在复杂的多分支结构中表现尤为突出。

# 相关行波分析和测距的代码
import numpy as np
import matplotlib.pyplot as plt
from scipy import signal
from wavelet_transform import wavelet_transform

class FaultLocation:
    def __init__(self, sampling_rate, line_length, wave_speed):
        self.sampling_rate = sampling_rate
        self.line_length = line_length
        self.wave_speed = wave_speed

    def extract_wave_arrival_time(self, signal_data):
        """
        提取行波到达时刻
        """
        wavelet_transform_result = wavelet_transform(signal_data)
        arrival_time = self.find_peak_time(wavelet_transform_result)
        return arrival_time

    def find_peak_time(self, transform_data):
        """
        查找波峰位置
        """
        peak_time = np.argmax(np.abs(transform_data))
        return peak_time / self.sampling_rate  # 转换为时间

    def calculate_fault_distance(self, time_diff):
        """
        计算故障发生的距离
        """
        distance = time_diff * self.wave_speed
        return distance

# 示例代码,仿真信号
def simulate_fault_signal(fault_time, line_length, sampling_rate):
    time = np.linspace(0, line_length / 300000000, int(line_length / 300000000 * sampling_rate))
    signal = np.sin(2 * np.pi * 50 * time) * (time >= fault_time)  # 假设50Hz信号
    return time, signal

# 主要仿真过程
if __name__ == "__main__":
    sampling_rate = 10000  # 采样率
    line_length = 1000  # 线路长度,单位米
    wave_speed = 300000000  # 波速,单位米/秒

    fault_time = 0.005  # 故障发生时间
    time, signal = simulate_fault_signal(fault_time, line_length, sampling_rate)

    # 创建FaultLocation对象
    fault_locator = FaultLocation(sampling_rate, line_length, wave_speed)

    # 提取行波到达时刻
    arrival_time = fault_locator.extract_wave_arrival_time(signal)
    print(f"故障到达时间: {arrival_time}秒")

    # 计算故障位置
    time_diff = arrival_time - fault_time
    fault_distance = fault_locator.calculate_fault_distance(time_diff)
    print(f"故障位置距离: {fault_distance}米")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值