Triplet Loss笔记

在有监督学习中,一般都有固定数量的类别。通常我们可以用Softmax结合Cross Entropy Loss来做分类。

在监督学习中,会有变化数量的类别,这个时候我们可以用Triplet Loss来表征。

Triplet Loss需要有三个对象,一个anchor(基准),一个positive(正例),一个negative(负例)。Triplet Loss的目标是使具有相同label的样本在embedding空间尽可能地近,使不同label的样本尽可能地远。

Loss的具体计算方式为L = max(d_p + d_n +margin,0)

根据d_pd_n的距离,Triplet可以被分为三种类型:

  • Easy Triplet
  • Hard Triplet
  • Semi-hard Triplet

采样Triplet的方法有两种:Offline Triplet Mining和Online Triplet M

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值