在有监督学习中,一般都有固定数量的类别。通常我们可以用Softmax结合Cross Entropy Loss来做分类。
在监督学习中,会有变化数量的类别,这个时候我们可以用Triplet Loss来表征。
Triplet Loss需要有三个对象,一个anchor(基准),一个positive(正例),一个negative(负例)。Triplet Loss的目标是使具有相同label的样本在embedding空间尽可能地近,使不同label的样本尽可能地远。
Loss的具体计算方式为。
根据和的距离,Triplet可以被分为三种类型:
- Easy Triplet
- Hard Triplet
- Semi-hard Triplet
采样Triplet的方法有两种:Offline Triplet Mining和Online Triplet M