pytorch torch.nn.ReLU和torch.nn.functional.relu的区别

本文介绍了在PyTorch中如何使用ReLU激活函数,分别通过torch.nn.ReLU()模块类和torch.nn.functional.relu()函数进行了示例。两者的区别在于,ReLU模块需要在nn.Module的上下文中使用,而functional模块提供的relu函数则更为灵活,可以直接调用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用一段小程序来说明
先看torch.nn.ReLU()
import torch
input = torch.Tensor([[1.0, 2.0],
                    [-1.0, 3.0]])
class demo(torch.nn.Module):
    def __init__(self):
        super(demo, self).__init__()
        self.relu = torch.nn.ReLU()
    def forward(self, x):
        return self.relu(x)
model = demo()
print(model(input))

>>
tensor([[1., 2.],
        [0., 3.]])

torch.nn.ReLU必须在继承torch.nn.Module的情况下使用

再看torch.nn.functional.relu()
import torch
input = torch.Tensor([[1.0, 2.0],
                    [-1.0, 3.0]])
print(torch.nn.functional.relu(input))

>>
tensor([[1., 2.],
        [0., 3.]])

torch.nn.functional.relu更像是独立的一个函数,可以自由使用

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

live_for_myself

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值