参考:Pedestrian Attribute Recognition: A Survey
Pedestrian Attribute Recognition 调研笔记
首先,看下文章结构
其中,重点介绍2015年之后比较新的算法
PROBLEM FORMULATION
输入:一张包含人的图片
输出:attribute的list A={a1, a2, a3…al}
如下图所示:
DATASET
以下attribute的datset:
在这里面,比较常用的是peta和rap以及rap2.0,下面分别介绍
RAP
RAP数据集包含41585张行人样本,分为69个二分类属性和三个多分类属性,分辨率范围:3692 to 344554
PETA
19000 images, from 1739 to 169365 pixels.
include 8705 persons
with 61 binary and 4 multi-class attribute
9500 for training, 1900 for verification and 7600 for testing
state of the art
近些年比较流行的算法类型和能达到的性能如下:
evaluation criteria
常见的评价指标除了accuracy/precision/recall/F1 以外,还包括mA,具体公式如下
challenge
行人属性分析中,挑战除了通常情况下的图像模糊,分辨率低等所造成的识别困难外,还包括以下两点挑战:
1)行人属性各不相同,有的需要浅层特征,有的需要高层特征,有的需要局部特征,有的需要全局特征
2)每种属性的收敛速度不相同
3)每种属性标注数据不平衡
regular pipeline
常见的pipeline主要包括两种,1)multitask learning 2)multilabel learning
multitask
指的是将每一类作为一个任务,前面共享神经网络参数,最后n个全连接层并列,每个全连接层负责一个任务的分类,如下图所示:
multilabel
multilabel是将所有分类作为一个任务处理,用一个全连接层对属性分类,只是预测的不是单一类别,而是类别列表,如下图所示:
algorithm
下面主要介绍几种常见的算法
HydraPlus-Net: Attentive Deep Features for Pedestrian Analysis(ICCV-2017)

这个算法的主要在于,作者将attention加入到了神经网络的多层中,这样使得不同的属性可以关注不同位置以及不同深度的特征
adaptively weighted multitask deep network for person attribute classification(MM-2017)
这篇论文的特点在于损失函数的改写,将验证集的loss作为学习率的权重加入到训练中。
multi-attribute learning for pedestrian attribute recognition in surveillance scenarios(acpr-2015)
这篇文章的贡献在于解决类别不平衡的问题,将数据量小的类别返回较大的loss
应用
属性分析有很多应用场景,比如分析零售业的目标用户等等
未来的研究方向
attribute的识别一般情况从两方面建模,1)对属性间的不同建模,如不同的关注区域 2)属性间的相关性建模如lstm