Self-supervised Learning: Generative or Contrastive | |||||||
type | method | fos | model | self-supervision | pretext-task | 特点 | 备注 |
generative self-supervised learning | Auto-regressive (AR) Model | nlp | GPT/GPT-2 | follow words | next-word prediction | 1. 采用逐项生成 (component-by-component) 的方式来生成完整的数据。 2. advantage:model the context dependency well 3. disadvantages:access its context from one direction | |
cv | PixelRNN/PixelCNN(image)/WavNet(video) | follow pixels | next-pixel prediction | ||||
graph | GraphRNN/MRNN/GCPN(reinforcement learning) | follow edges | next-edge prediction | ||||
Flow-based Model | cv | NICE/RealNVP/Glow | whole image | Image reconstruction | 从数据中估计复杂的高维密度函数。通过一系列可逆变换来进行生成。由于这些变换都是可逆的,因此隐变量(输入)和生成结果(输出)之间可以任意转换 | ||
Auto-encoding (AE) Model | NLP | FastText/word2vec | Context words | CBOW & SkipGram/CBOW | Context Prediction Model (CPM):基于输入预测上下文信息 | ||
graph | DeepWalk:基于随机游走 | Graph edges | Graph edges | ||||
LINE:基于邻居汇聚 | |||||||
NLP | BERT/ SpanBert/Ernie/MLM | Masked words ,Sentence topic/ Masked words | Masked language model,Next senetence prediction /Masked language model | Denoising AE Model:representation should be robust to the introduction of noise. | |||
Graph | GPT-GNN | Attribute & Edge | Masked graph generation | ||||
CV | VAE/VQ-VAE/VQ-VAE2 | Whole image | Image reconstruction | Variational AE Model(变分自编码器):通过对输入信息进行重构,来学习输入信息的表征的均值和方差 | |||
Graph | VGAE/DVNE/vGraph | Graph edges | Graph edges | ||||
Hybrid Generative Models | nlp | XLNet | Masked words | Permutation language model | AE+AR | ||
graph | Graph | Attribute & Edge | Sequential graph generation | Flow+AR | |||
cv | MADE | AE+AR | |||||
constractive self-supervised learning:通过对比正负样本来学习表示 | Context-Instance Contrast:上下文与实例的对比,也就是建立局部与全局之间的关联 | cv | RotNet/PIRL | Spatial relations | Rotation Prediction/Jigsaw | predict relative position(PRP):许多数据在其各部分之间包含丰富的空间或序列关系。 | 区别: 1)PRP 关注于学习局部组件之间的相对位置。全局上下文是预测这些关系的隐含要求(例如,了解大象的长相对于预测它头和尾巴的相对位置至关重要); 2)MI 侧重于学习局部组件和全局上下文之间的明确归属关系。局部之间的相对位置被忽略。 |
nlp | ALBERT | Masked words,Sentence order | Masked language model, Sentence order prediction | ||||
cv | Deep InfoMax/CPC/AMDIM | Belonging | MI Maximization | Maximize Nutual Information(MI):focus on learning the explicit belonging relationship betweenlocal parts and global context. | |||
nlp | InfoWorld | ||||||
graph | InfoGraph/DeelGraph InfoMax | ||||||
Instance-Instace Constract:实例级表示,而不是上下文级表示,对于广泛的分类任务来说更为关键 | cv | DeepCluster/Local Aggregation/ClusterFit | Similarity (Instance-Instance) | Cluster discrimination(基于聚类判别) | 首先研究基于聚类的实例与实例之间的对比,也就是利用聚类产生伪标签,这种方法不行。 | ||
MoCo/SimCLR/InfoMin/BYOL/SimSiam | Identity (Instance-Instance) | Instance discrimination(基于实例判别) | moco打破了一正一负,大大增加了负样本的数量。 | ||||
graph | GCC/CMC-Graph/M3S | ||||||
Generative-Contrastive (Adversarial) | Generate with Complete Input | cv | VAE-GAN/BI-GAN/AAE/ALI | whole image | Image reconstruction | GAN和GAN的变体,目的就是捕获完整信息 | |
Recover with Partial Input | CV | Colorization | Image color | Colorization | Recover with Partial Input | ||
Inpainting | Parts of images | Inpainting | |||||
Super-Resolution | Details of images | Super-Resolution | |||||
Pretrained Langrage Model | nlp | ELECTRA/WKLM | Pretrained Langrage Model | ||||
Graph learning | Graph | ANE/GraphGAN/GraphSCAN | Graph learning |
Self-supervised Learning: Generative or Contrastive总结
最新推荐文章于 2024-11-07 14:05:19 发布