Self-supervised Learning: Generative or Contrastive总结

Self-supervised Learning: Generative or Contrastive
typemethodfosmodelself-supervisionpretext-task特点备注
generative self-supervised learningAuto-regressive (AR) ModelnlpGPT/GPT-2follow wordsnext-word prediction1. 采用逐项生成 (component-by-component) 的方式来生成完整的数据。
2. advantage:model the context dependency well
3. disadvantages:access its context from one direction
cvPixelRNN/PixelCNN(image)/WavNet(video)follow pixelsnext-pixel prediction
graphGraphRNN/MRNN/GCPN(reinforcement learning)follow edgesnext-edge prediction
Flow-based ModelcvNICE/RealNVP/Glowwhole imageImage reconstruction从数据中估计复杂的高维密度函数。通过一系列可逆变换来进行生成。由于这些变换都是可逆的,因此隐变量(输入)和生成结果(输出)之间可以任意转换
Auto-encoding (AE) ModelNLPFastText/word2vecContext wordsCBOW & SkipGram/CBOWContext Prediction Model (CPM):基于输入预测上下文信息
graphDeepWalk:基于随机游走Graph edgesGraph edges
LINE:基于邻居汇聚
NLPBERT/
SpanBert/Ernie/MLM
Masked words ,Sentence topic/
Masked words
Masked language model,Next senetence prediction
/Masked language model
Denoising AE Model:representation should be robust to the introduction of noise.
GraphGPT-GNNAttribute & EdgeMasked graph generation
CVVAE/VQ-VAE/VQ-VAE2Whole imageImage reconstructionVariational AE Model(变分自编码器):通过对输入信息进行重构,来学习输入信息的表征的均值和方差
GraphVGAE/DVNE/vGraphGraph edgesGraph edges
Hybrid Generative ModelsnlpXLNetMasked wordsPermutation language modelAE+AR
graphGraphAttribute & EdgeSequential graph generationFlow+AR
cvMADEAE+AR
constractive self-supervised learning:通过对比正负样本来学习表示Context-Instance Contrast:上下文与实例的对比,也就是建立局部与全局之间的关联cvRotNet/PIRLSpatial relations Rotation Prediction/Jigsawpredict relative position(PRP):许多数据在其各部分之间包含丰富的空间或序列关系。区别:
1)PRP 关注于学习局部组件之间的相对位置。全局上下文是预测这些关系的隐含要求(例如,了解大象的长相对于预测它头和尾巴的相对位置至关重要);
2)MI 侧重于学习局部组件和全局上下文之间的明确归属关系。局部之间的相对位置被忽略。
nlpALBERTMasked words,Sentence orderMasked language model, Sentence order prediction
cvDeep InfoMax/CPC/AMDIMBelongingMI MaximizationMaximize Nutual Information(MI):focus on learning the explicit belonging relationship betweenlocal parts and global context.
nlpInfoWorld
graphInfoGraph/DeelGraph InfoMax
Instance-Instace Constract:实例级表示,而不是上下文级表示,对于广泛的分类任务来说更为关键cvDeepCluster/Local Aggregation/ClusterFitSimilarity (Instance-Instance)Cluster discrimination(基于聚类判别)首先研究基于聚类的实例与实例之间的对比,也就是利用聚类产生伪标签,这种方法不行。
MoCo/SimCLR/InfoMin/BYOL/SimSiamIdentity (Instance-Instance)Instance discrimination(基于实例判别)moco打破了一正一负,大大增加了负样本的数量。
graphGCC/CMC-Graph/M3S
Generative-Contrastive (Adversarial)Generate  with Complete InputcvVAE-GAN/BI-GAN/AAE/ALIwhole imageImage reconstructionGAN和GAN的变体,目的就是捕获完整信息
Recover with Partial InputCVColorizationImage colorColorizationRecover with Partial Input
InpaintingParts of imagesInpainting
Super-ResolutionDetails of imagesSuper-Resolution
Pretrained Langrage ModelnlpELECTRA/WKLMPretrained Langrage Model
Graph learningGraphANE/GraphGAN/GraphSCANGraph learning
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值