端到端自动驾驶与通用机器人

端到端自动驾驶与通用机器人

引言

一直以来,自动驾驶和机器人是紧密相关相互借鉴和启发的两个行业,本文将讨论自动驾驶早期发展与机器人的历史渊源,以及近年来自动驾驶端到端技术可能对机器人行业的启发;最后,我们将呈现关于物理世界AGI的实现路径的不同观点。

阶段一:机器人赋能自动驾驶早期的发展

自动驾驶的早期发展过程中,借鉴了大量机器人技术的积累。这些借鉴不仅体现在传感器的使用上,还包括感知算法、规划算法、中间件等多个层面。

自动驾驶系统大量依赖激光雷达、摄像头和超声波传感器,这些传感器技术最初在机器人领域得到了广泛应用和成熟。机器人使用这些传感器来感知环境、避障和定位。例如,激光雷达在机器人导航中的应用可以追溯到20世纪80年代末和90年代初,麻省理工学院(MIT)和卡内基梅隆大学(CMU)的研究人员在那个时期开始将激光雷达应用于机器人系统中。2004年美国国防部举办的DARPA无人驾驶挑战赛上,激光雷达首次被应用于自动驾驶汽车。

感知算法方面,SLAM(Simultaneous Localization and Mapping)技术是机器人自主导航的核心技术之一,允许机器人在未知环境中实时构建地图并确定自身位置。自动驾驶系统借鉴SLAM技术,实现高精度地图构建和车辆定位。例如,百度的Apollo自动驾驶平台利用SLAM技术构建高精度地图,提供车辆定位和导航支持。这种技术的应用提高了自动驾驶系统在复杂城市环境中的导航能力。

路径规划算法方面,目前广泛应用于自动驾驶行业的经典算法A和Dijkstra算法均来自于机器人行业。例如,Waymo的自动驾驶系统便用了一种改进的A算法,能够在复杂城市环境中计算出最优驾驶路径,同时避开交通拥堵和事故区域。

中间件在机器人系统

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值