激光感知
文章平均质量分 59
自动驾驶实战(AIFighting)
自动驾驶算法工程师
公众号:Aifighting
全网第一且唯一分享自动驾驶实战,以代码、项目的形式讲解自动驾驶感知方向的关键技术,从算法训练到模型部署。主要致力于3D目标检测,3D目标追踪,多传感器融合,Transform,BEV,OCC,模型量化,模型部署等方向的实战
展开
-
自定义数据集上的3D目标检测:使用OpenPCDet训练CenterPointPillar模型
在自动驾驶和机器人领域,3D目标检测是关键技术之一。它能够提供关于周围环境中物体的精确位置和尺寸信息。OpenPCDet是一个基于PyTorch的开源3D目标检测框架,支持多种3D检测网络。在本文中,我们将探讨如何使用OpenPCDet框架和CenterPointPillar模型,结合自定义数据集进行3D目标检测的训练。1、数据集准备(1)将pcd转成bin文件(2)创建自己加载数据集(3)生成info文件2、新建立自己的网络模型3、训练并测试其效果,基于不同的距离计算Map4、结果可视化。原创 2024-05-29 23:06:19 · 1578 阅读 · 0 评论 -
使用NuScenes数据集生成ROS Bag文件:深度学习与机器人操作的桥梁
在自动驾驶、机器人导航及环境感知的研究中,高质量的数据集是推动算法发展的关键。NuScenes数据集作为一项开源的多模态自动驾驶数据集,提供了丰富的雷达、激光雷达(LiDAR)、摄像头等多种传感器数据,是进行多传感器融合研究的理想选择。而ROS(Robot Operating System)作为机器人软件开发的主流框架,其灵活的架构和丰富的工具链极大地便利了机器人应用程序的开发。本文将指导你如何利用NuScenes数据集生成ROS兼容的Bag文件,为你的机器人项目注入强大的数据支持。原创 2024-05-29 23:01:22 · 1404 阅读 · 0 评论 -
英伟达激光3D感知CenterPoint的推理与可视化(代码开源)
CenterPoint:自动驾驶中的推理与可视化原创 2024-05-15 21:32:51 · 1075 阅读 · 0 评论