OpenPCdet
文章平均质量分 69
自动驾驶实战(AIFighting)
自动驾驶算法工程师
公众号:Aifighting
全网第一且唯一分享自动驾驶实战,以代码、项目的形式讲解自动驾驶感知方向的关键技术,从算法训练到模型部署。主要致力于3D目标检测,3D目标追踪,多传感器融合,Transform,BEV,OCC,模型量化,模型部署等方向的实战
展开
-
基于OpenPCdet使用自己的数据集合训练Transform 模型(附视频)
在自动驾驶和机器人领域,3D目标检测是关键技术之一。它能够提供关于周围环境中物体的精确位置和尺寸信息。OpenPCDet是一个基于PyTorch的开源3D目标检测框架,支持多种3D检测网络。在本文中,我们将探讨如何使用OpenPCDet框架和Tranform模型,结合自定义数据集进行3D目标检测的训练。欢迎关注我的公众号auto_driver_ai(Ai fighting), 第一时间获取更新内容。3、训练并测试其效果,基于不同的距离计算Map。(2)创建自己加载数据集。2、新建立自己的网络模型。原创 2024-07-16 22:30:09 · 220 阅读 · 0 评论 -
使用OpenPCDet训练与测试多传感器融合模型BEVFusion,OPenPCdet代码架构介绍
在自动驾驶领域,多传感器融合技术是一种常见的方法,用于提高感知系统的准确性和鲁棒性。其中,BevFusion是一种流行的融合方法,可以将来自不同传感器的数据进行融合,生成具有丰富信息的鸟瞰图(BEV)表示。在本文中,我们将介绍如何使用OpenPCdet框架训练和测试多传感器融合BevFusionOpenPCDet 的代码结构清晰且模块化,每个部分都承担着不同的功能,协同工作完成 3D 目标检测任务。了解 OpenPCDet 的代码结构有助于更好地理解其工作原理和进行二次开发。原创 2024-06-08 21:23:39 · 1271 阅读 · 0 评论 -
使用OpenPCDet训练与测试Transformer模型:如何加载自己的数据集
通过上述步骤,你不仅能成功地在OpenPCDet框架下训练和测试基于Transformer的3D物体检测模型,还能灵活地加载和处理自定义数据集。这不仅促进了模型的泛化能力,也为特定应用场景的定制化需求提供了可能。随着数据集的多样化和模型的持续优化,未来在3D感知领域的应用将更加广泛且精准。原创 2024-06-08 21:12:53 · 861 阅读 · 0 评论 -
使用OpenPCDet实现VoxelNet改进的VoxelNext进行训练和测试:实现NuScence数据集的全局感知结果可视化
本文介绍了如何使用OpenPCDet框架,实现VoxelNext模型在NuScence数据集上的训练、测试和全局感知结果可视化。通过这个过程,我们可以更好地了解VoxelNext模型在自动驾驶场景中的性能表现,为进一步优化模型和算法提供依据。同时,可视化结果也有助于我们更直观地观察和理解模型的检测效果。关注我的公众号auto_drive_ai(Ai fighting), 第一时间获取更新内容。原创 2024-06-05 21:58:10 · 621 阅读 · 0 评论 -
安装、测试和训练OpenPCDet:一篇详尽的指南
OpenPCDet是一个用于3D目标检测的开源工具箱,它提供了多种数据集的加载器,支持多种模型,并且易于扩展。在本博客中,我将引导你完成OpenPCDet的安装过程,并展示如何测试和训练预训练模型。原创 2024-06-02 19:25:58 · 2213 阅读 · 6 评论 -
3D目标检测入门:探索OpenPCDet框架
前言在自动驾驶和机器人视觉这两个飞速发展的领域中,3D目标检测技术扮演着核心角色。随着深度学习技术的突破性进展,3D目标检测算法的研究和应用正日益深入。OpenPCDet,这个由香港中文大学OpenMMLab实验室精心打造的开源工具箱,为3D目标检测领域提供了一个功能强大且易于使用的平台。本文将带您走进OpenPCDet的世界,一探3D目标检测的奥秘。原创 2024-06-01 19:44:31 · 1556 阅读 · 0 评论 -
自定义数据集上的3D目标检测:使用OpenPCDet训练CenterPointPillar模型
在自动驾驶和机器人领域,3D目标检测是关键技术之一。它能够提供关于周围环境中物体的精确位置和尺寸信息。OpenPCDet是一个基于PyTorch的开源3D目标检测框架,支持多种3D检测网络。在本文中,我们将探讨如何使用OpenPCDet框架和CenterPointPillar模型,结合自定义数据集进行3D目标检测的训练。1、数据集准备(1)将pcd转成bin文件(2)创建自己加载数据集(3)生成info文件2、新建立自己的网络模型3、训练并测试其效果,基于不同的距离计算Map4、结果可视化。原创 2024-05-29 23:06:19 · 1578 阅读 · 0 评论