异构图注意力网络Heterogeneous Graph Attention Network ( HAN )

本文解析了异构图注意力网络(HAN)的基础概念,包括异构图、元路径和其核心的结点级别与语义级别注意力机制。通过实例展示了如何通过元路径分解异构图并进行信息传递和聚合。


前言

异构图注意力网络Heterogeneous Graph Attention Network ( HAN )学习笔记。


一、基础知识

1.异构图(Heterogeneous Graph)

同构图是指结点类型相同、边类型也相同的图。异构图则是边和结点类型总和大于2的图,如下所示。
在这里插入图片描述

2.元路径

在这里插入图片描述

3.异构图注意力网络

中心思想:通过元路径生成不同元路径下的同构子图,在不同子图中进行消息传递聚合信息( Node-Level Attention ),最后将各元路径下子图聚合出的向量注意力加权聚合后进行后道传播( Sematic-Level Attention )。

为更清晰的解释原理,以下将逐步拆解。
(1)第一步
在这里插入图片描述
异构图如图片左边所示。根据M-A-M和M-D-M两种元路径,将有“介质”A或D连接的M之间视为通路(一阶邻居),可以拆解异构图为图片右边所示的子图。

二、异构图注意力网络

1.结点级别注意力(Node-level Attention)

在这里插入图片描述

图取自论文原文

  1. 节点注意力的计算。
    h i ′ = M ϕ i ⋅ h i \mathbf{h}_i^{\prime}=\mathbf{M}_{\phi_i} \cdot \mathbf{h}_i hi=Mϕihi
  • i i i为第i个主结点。
  • j j j为第j个邻居结点。
  • M Φ i M_{\Phi_i} MΦi 是模型需要训练的线性变化矩阵。 M Φ i M_{\Phi_i} MΦi 主要作用是提高拟合能力。
  • h i \mathbf{h}_i hi为结点的特征向量。
    α i j Φ = softmax ⁡ j ( e i j Φ ) = exp ⁡ ( σ ( a Φ T ⋅ [ h i ′ ∥ h j ′ ] ) ) ∑ k ∈ N i Φ exp ⁡ ( σ ( a Φ T ⋅ [ h i ′ ∥ h k ′ ] ) ) \alpha_{i j}^{\Phi}=\operatorname{softmax}_j\left(e_{i j}^{\Phi}\right)=\frac{\exp \left(\sigma\left(\mathbf{a}_{\Phi}^{\mathrm{T}} \cdot\left[\mathbf{h}_i^{\prime} \| \mathbf{h}_j^{\prime}\right]\right)\right)}{\sum_{k \in \mathcal{N}_i^\Phi} \exp \left(\sigma\left(\mathbf{a}_{\Phi}^{\mathrm{T}} \cdot\left[\mathbf{h}_i^{\prime} \| \mathbf{h}_k^{\prime}\right]\right)\right)} αijΦ=softmaxj(eijΦ)=kNiΦexp(σ(a<
评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值