一篇BiLSTM-CRF比较易懂的文章

转自:https://createmomo.github.io/

BERT-BiLSTM-CRF是一种用于命名实体识别任务的模型。它结合了Google的BERT模型和BiLSTM-CRF模型,通过在BERT模型上进行预训练,然后在BiLSTM-CRF模型中进行微调来实现中文命名实体识别。该模型的Tensorflow代码可以在GitHub上找到,由hemingkx编写。 该模型的具体实现细节可以参考知乎上的文章《用BERT做NER?教你用PyTorch轻松入门Roberta!》。在这篇文章中,主要对代码内容进行了讲解,而不深入研究训练参数的选择。 总之,BERT-BiLSTM-CRF模型是一种结合了BERT和BiLSTM-CRF的模型,用于中文命名实体识别任务。它能够通过预训练和微调来提高模型的准确性和性能。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [BERT-BiLSTM-CRF-NER:NER任务的Tensorflow解决方案将BiLSTM-CRF模型与Google BERT微调和私有服务器服务结合...](https://download.csdn.net/download/weixin_42179184/18490050)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [使用BERT + Bi-LSTM + CRF 实现命名实体识别](https://blog.csdn.net/qq_52852138/article/details/123766574)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值