【2025版】最新轻松搭建自己的RAG知识库,零基础入门到精通,收藏这篇就够了

Retrieval-Augmented Generation (检索增强生成)

RAGFlow

RAGFlow 是一款基于深度文档理解构建的开源 RAG(Retrieval-Augmented Generation)引擎。RAGFlow 可以为各种规模的企业及个人提供一套精简的 RAG 工作流程,结合大语言模型(LLM)针对用户各类不同的复杂格式数据提供可靠的问答以及有理有据的引用。

主要功能

Quality in, quality out

  • 基于深度文档理解,能够从各类复杂格式的非结构化数据中提取真知灼见。

  • 真正在无限上下文(token)的场景下快速完成大海捞针测试。

🍱基于模板的文本切片

  • 不仅仅是智能,更重要的是可控可解释。

  • 多种文本模板可供选择

🌱 有理有据、最大程度降低幻觉(hallucination)

  • 文本切片过程可视化,支持手动调整。

  • 有理有据:答案提供关键引用的快照并支持追根溯源。

🍔 兼容各类异构数据源

  • 支持丰富的文件类型,包括 Word 文档、PPT、excel 表格、txt 文件、图片、PDF、影印件、复印件、结构化数据, 网页等。

🛀 全程无忧、自动化的 RAG 工作流

  • 全面优化的 RAG 工作流可以支持从个人应用乃至超大型企业的各类生态系统。

  • 大语言模型 LLM 以及向量模型均支持配置。

  • 基于多路召回、融合重排序。

  • 提供易用的 API,可以轻松集成到各类企业系统。

架构图

快速开始

# 克隆仓库``$ git clone https://github.com/infiniflow/ragflow.git
# 启动服务``$ cd ragflow/docker``$ chmod +x ./entrypoint.sh``$ docker compose -f docker-compose-CN.yml up -d

免费体验

在线体验地址

https://demo.ragflow.io/knowledge

主要功能有五部分组成:知识库、聊天、搜索、Agent、文件管理。

知识库

数据集

检索测试

配置

支持设置语言、权限、嵌入模型、解析方法、自动关键词、自动问题、块Token数、分段标识符、布局识别、表格转HTML、使用召回增强RAPTOR策略

聊天

支持助理配置、提示引擎、模型设置。

提示引擎:支持设置相似度阈值、关键字相似度权重、多轮对话优化、Rerank模型

模型设置:支持选择大预言模型、自由(谨慎程度)、温度(预测随机性)、TOP N(预测随机性)、出席处罚、频率惩罚、最大token数。

搜索

基于创建的知识库进行搜索

文件管理

github开源地址

https://github.com/infiniflow/ragflow

gitee地址

https://gitee.com/li_zhixi/RAGFlow

下面给大家分享一份2025最新版的大模型学习路线,帮助新人小白更系统、更快速的学习大模型!
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享**

一、2025最新大模型学习路线

一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。

我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。

L1级别:AI大模型时代的华丽登场

L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理,关键技术,以及大模型应用场景;通过理论原理结合多个项目实战,从提示工程基础到提示工程进阶,掌握Prompt提示工程。

L2级别:AI大模型RAG应用开发工程

L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

L3级别:大模型Agent应用架构进阶实践

L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体;同时还可以学习到包括Coze、Dify在内的可视化工具的使用。

L4级别:大模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

整个大模型学习路线L1主要是对大模型的理论基础、生态以及提示词他的一个学习掌握;而L3 L4更多的是通过项目实战来掌握大模型的应用开发,针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。

二、大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

三、大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

四、大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

五、大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。


因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

### 如何在本地环境中搭建 DeepSeek RAG 知识库 #### 准备环境 为了成功部署 DeepSeek RAG 应用程序,需先安装必要的依赖项并配置开发环境。确保已安装 Python 和虚拟环境工具如 `venv` 或者 Anaconda 来管理项目所需的包本。 ```bash python3 -m venv rag_env source rag_env/bin/activate # Linux/MacOS rag_env\Scripts\activate # Windows pip install --upgrade pip setuptools wheel ``` #### 安装 DeepSeek-R1 及其依赖 获取官方发布的 DeepSeek-R1 模型及其配套资源文件,并按照说明完成安装过程。通常这会涉及到下载预训练权重以及设置特定于该框架的数据处理管道[^1]。 #### 配置 RAG 数据源 定义要用于检索增强生成的知识库内容来源。可以是从互联网抓取的信息、企业内部文档或是任何结构化的数据库记录。对于非文本类型的资料,比如图片中的文字,则可借助 OCR 技术将其转换成机器可读的形式以便后续操作[^2]。 #### 实现数据索引机制 创建高效的全文搜索引擎来加速查询响应时间。Elasticsearch 是一个不错的选择因为它不仅支持复杂的布尔逻辑表达式还具备良好的扩展性和稳定性;另外也可以考虑使用 Faiss 进行向量相似度匹配从而实现更精准的结果返回。 #### 开发 API 接口服务端 编写 RESTful Web Service 将前端请求转发给后台执行具体的业务逻辑——即调用之前准备好的模型来进行预测分析并将最终答案反馈回去展示给用户查看。Flask/Django 等轻量化 web framework 能帮助快速构建这样的交互平台。 #### 测试与优化 通过一系列单元测试验证各个组件之间的协作是否正常运作的同时也要关注整体系统的性能表现。针对可能出现瓶颈的地方采取针对性措施加以改进直至满足预期目标为止。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值