1.定义
齐次坐标就是将一个原本是n维的向量用一个n+1维向量来表示,是指一个用于投影几何里的坐标系统,如同用于欧氏几何里的笛卡儿坐标一般。
2.应用背景
在欧氏几何空间,两条平行线不能相交;然而,在透视几何空间里面,两条平行线可以相交。欧氏空间描述正投影非常适合,但是这种方法却不适合处理透视空间的问题。例如:2维笛卡尔坐标(x,y),当该点在无穷远处时,这个点的坐标将是(∞,∞),在欧氏空间,这变得没有意义;平行线在透视空间的无穷远处交于一点,但是在正投影却不能,于是数学家发明了齐次坐标来解决这个问题。
3.齐次坐标
(1)从欧式几何坐标点转换成透视几何齐次坐标时
(x,y)-》(x,y,w)
注意:
- 投影平面上的任何点都可以表示成一三元组 (x, y, w),称之为该点的’齐次坐标或投影坐标,其中 x、y 及 w 不全为 0;
- 当w 不为 0,则该点表示欧氏平面上的该 (X/Z, Y/Z);
- 当w 为 0,则该点表示一无穷远点;
(2)从透视几何齐次坐标转换成欧式几何坐标点
(x,y,w)-》(x/w,y/w)
注意:
- 以齐次坐标表表示的点,若该坐标内的数值全乘上一相同非零实数,仍会表示该点;
- 相反地,两个齐次坐标表示同一点,当且仅当其中一个齐次坐标可由另一个齐次坐标乘上一相同非零常数得取得;
- 注意,三元组 (0, 0, 0)不表示任何点。原点表示为 (0, 0, 1)[3];
4.意义
4.1用来区分向量和点
(1)从普通坐标转换成齐次坐标时
如果(x,y,z)是个点,则变为(x,y,z,1);
如果(x,y,z)是个向量,则变为(x,y,z,0)
(2)从齐次坐标转换成普通坐标时
如果是(x,y,z,1),则知道它是个点,变成(x,y,z);
如果是(x,y,z,0),则知道它是个向量,仍然变成(x,y,z)
4.2易于进行仿射几何变换
详见:https://blog.csdn.net/zhuiqiuzhuoyue583/article/details/95230246