关键点检测评价指标OKS

OKS(Object Keypoint Similarity)是评估2D关键点检测精度的指标,它考虑了检测关键点与Ground Truth的距离、可见性及目标尺度。公式中涉及欧氏距离、关键点可见性标志位、目标尺度因子和关键点常量。其中,v的三个状态分别代表未标注、遮挡和可见,s表示目标尺度,k是关键点的标准化因子,反映标注难度。OKS计算涉及对数据集的统计分析,用于衡量检测结果的质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

OKS,全称为“Object Keypoint Similarity”,即目标关键点相似性。是一种常见地、用于评估2D关键点检测的指标

公式为: 

 描述为:

 Here di is the Euclidean distance between a detected keypoint and its corresponding ground truth, vi is the visibility flag of the ground truth, s is the object scale, and ki is a per-keypoint constant that controls falloff.

 翻译:这里d_i表示检测的关键点与对应GT关键点之间的欧氏距离。v_i为GT的可见性标志位,s表示目标的尺度因子,而k_i表示控制衰减的每关键点常量。

其中,v有三种取值

0表示未标注点,1表示标注了但是被遮挡,2表示标注了并且可见;

结合冲激函数\delta就可以通过v的取值把所有标注了的关键点筛选出来。

s表示当前人的尺度因子,这个值等于此人在groundtruth中所占面积的平方根,即\sqrt{(y_2-y_1)(x_2-x_1)}

k表示第i个骨骼点的归一化因子,这个因此是通过对数据集中所有groundtruth计算的标准差而得到的,反映出当前骨骼点标注时候的标准差, k越大表示这个点越难标注。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

木盏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值