OKS,全称为“Object Keypoint Similarity”,即目标关键点相似性。是一种常见地、用于评估2D关键点检测的指标。
公式为:
描述为:
Here di is the Euclidean distance between a detected keypoint and its corresponding ground truth, vi is the visibility flag of the ground truth, s is the object scale, and ki is a per-keypoint constant that controls falloff.
翻译:这里表示检测的关键点与对应GT关键点之间的欧氏距离。
为GT的可见性标志位,s表示目标的尺度因子,而
表示控制衰减的每关键点常量。
其中,v有三种取值:
0表示未标注点,1表示标注了但是被遮挡,2表示标注了并且可见;
结合冲激函数就可以通过v的取值把所有标注了的关键点筛选出来。
s表示当前人的尺度因子,这个值等于此人在groundtruth中所占面积的平方根,即。
k表示第i个骨骼点的归一化因子,这个因此是通过对数据集中所有groundtruth计算的标准差而得到的,反映出当前骨骼点标注时候的标准差, k越大表示这个点越难标注。