用户运营指标体系搭建逻辑

本文详细阐述了指标在业务中的重要性,包括表述业务特征、运营效果、未来方向和衍生价值。指标分为北极星指标、汇总指标和原子指标,其中北极星指标是关键,用于指引公司发展方向。注册指标关注用户注册过程,活跃指标如DAU衡量用户活跃度,留存指标则关注用户长期参与。构建指标体系需确定北极星指标,完善业务口径和关联维度,并确保指标的正确性和完备性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、指标的意义


指标的四个价值点:

  1.     表述业务场景的业务特征。
  2.     表述业务场景的运营效果。
  3.     表述业务场景的未来方向。
  4.     表述业务场景的衍生价值。


下图是一个常见的用户活跃指标体系,顶层指标即为北极星指标,拆解过程中产生的指标是汇总指标,最底层无法再拆解的是原子指标。

 

指标体系包含2个核心概念:

  •     指标:具备业务意义,能准确反应业务情况的数据。

        必须具备清晰的业务意义
        只能是数字,不能是文本

  •     维度:描述指标的不同角度。

        维度依附于指标,不可独立存在
        可以是数字,也可以是文本


例如:今年(时间维度)昆明(区域维度)的用户复购率(指标名)是68%(指标值)

二、指标8要素

完整的指标定义可包含8大要素。

    产品经理应该主要关注业务口径,尽可能详细描述统计逻辑,保证语义清晰。
    技术口径和更新周期应邀请技术人员确定,按T+N的形式描述。

    关联维度需要检查指标的统计逻辑里是否包含所需的维度,缺字段就要及时补。

        例如订单如果没有存储城市字段,那么由订单表生产的有效单量、客单价等指标就不能和城市关联。


三、常见指标一览

3.1 北极星指标

北极星指标通常用来指引公司一年的工作方向:

  •     满足OMTM原则,即唯一、关键。

        特定情况下也可能出现2~3个北极星指标同时存在的场景

  •     可量化,可监测,可执行,可分析。

        贴合自身业务,不能脱离业务数据,也不能超出技术可实现范围


北极星指标有3个作用:

  •     指引公司发展方向,所有工作围绕它展开
  •     协助明确任务的优先级
  •     帮我们聚焦最关键、最核心的事


·按产品类型选择

产品诞生之初就是为了解决特定人群的特定需求,大而全地覆盖用户全部需求的产品并不存在,这就要求产品和用户需求、行业特征等密切关联,也就直接决定了产品的存在价值、商业模式和经营模式完全不同。

 

·按生命周期选择

产品的重要特征就是产品具有明确的生命周期,即诞生、发展、衰退和消亡,在每个生命周期阶段产品所反映的特征、所满足的用户需求也都不尽相同,故北极星指标也不尽相同。

按产品客群选择

不论何种类型,处于何种生命周期的产品,都有各种各样的客群,所以我们需要划分不同的客群,分别制定北极星指标,以达到精细化用户运营的目的。

  •     新增用户:留存率、流失率
  •     老用户:停留时长、使用频次
  •     首购用户:复购率、客单价


虚荣指标

  •     任何单调递增的指标都是虚荣指标,比较著名的有:累计注册用户量、未加入复购率的GMV、内容点击量、应用下载量等。
  •     因为这类指标只要时间够久,产品不出现致命问题,都是一直增长的,所以对业务没有任何指导意义。


3.2 注册指标

如何界定注册用户?对于大部分应用来说,注册应该指通过产品功能和运营手段,促使用户在产品中留下可以唯一标识用户身份的过程,通常由用户标识和用户验证两部分组成。

  •     用户标识:指能够唯一标识用户身份的信息,包括手机号、用户名、电子信箱和第三方账号、设备账号、设备标识等。
  •     用户验证:指判断用户标识是否与当前操作者匹配的方式,通常包括密码、短信验证码、第三方账号授权、生物识别等。


按照完备度可分出三种用户类型:游客(设备id),用户(手机号、用户名),客户(完整资料)。

如何引导用户注册?新客活动,消费型产品可通过新客红包、优惠券来刺激用户注册,免费型产品需依靠自身内容或者赠送会员等来吸引注册。

账户归一化

由于目前的账号注册形式多样,如用户名、手机、第三方登录……因此很容易出现多个账号其实同属于一个用户的情况,容易导致运营资源浪费在同一人身上,因此需要做账户归一化。

 

 

3.3 活跃指标

活跃指标用来衡量用户在产品内的活跃度。

UV:独立访客数,web产品通常以此衡量访问页面的去重用户量。

    通过设备id和用户标识来统计
    注意去重逻辑,比如同一个用户用两个设备访问产品,只能记作1个访客数。


DAU:日活,即产品日均活跃用户数。看似简单,其实暗藏陷阱。

以标准的日活定义为例:启动App,且停留超过N秒的xx数。

    N=0的时候,只要打开就计数了,大于0则还要根据停留时长来判断
    xx是衡量数字的标准,采取设备id?还是用户标识?

        如果是设备id,那么同一用户在两部手机打开app会被记为2个日活,否则只能算1个日活

    如果已知一个用户有两部手机,在A手机登录使用产品,B手机未登录使用产品。

        未做账户归一化和已做账户归一化会产生不同的统计结果


3.4 留存指标

为什么要做留存?

  •     当渠道新增触及天花板后,获客成本将显著上升,此时拉新已经到头了。
  •     增长过程中出现的大量沉默用户很可能脱离了产品生态,难以唤醒。


因此,必须要努力维持住现有的活跃用户,不让他们流失。

留存的定义:目标客群 + 考察周期 + 事件口径

    如:“新增用户”的次日留存率、次月留存率,“活跃用户”的次月留存率。


留存的事件口径必须前后一致:

  •     如今天“登录”的【新增用户】在【接下来的7天内】“登录”的用户占比
  •     以登录为唯一的衡量标准


三类事件口径


    业务留存:用户使用过某个功能,比如下单、购买等。

  •         微信朋友圈的留存定义:在 【2021年1月14日】到【2021年1月16日】期间的【活跃用户】,在【发布图文信息】后的【七天内】还【发布图文信息】的用户占比。
  •         目标客群:在 【2021年1月14日】到 【2021年1月16日】期间的【活跃用户】
  •         考察周期:【七天内】
  •         事件口径:在【发布图文信息】后的 【七天内】 还【发布图文信息】

    行为留存:用户产生过某个特定行为,通常不具备业务意义,如打开app、登录app等。

  •         高粘性用户的留存定义:在 【2021年1月14日】到【2021年1月16日】期间的【活跃用户】,在【启动应用且停留时长大于等于300秒】后的【七天内】仍然【启动应用且停留时长大于等于300秒】 的用户量。
  •         目标客群:在【2021年1月14日】 到 【2021年1月16日】期间的【活跃用户】
  •         考察周期:【七天内】
  •         事件口径:【启动应用且停留时长大于等于300秒】后的【七天内】仍然【启动应用且停留时长大于等于300秒】

    贡献留存:用户生产或消费过的内容、商品等,比如发短文、续费会员等。

  •         复购用户的留存定义:在 【2021年1月14日】到【2021年1月16日】期间的【活跃用户】,在【成功付费1后的【三个月内】仍然【成功付费】的用户量。
  •         目标客群:在 【2021年1月14日】到【2021年1月16日】期间的 【活跃用户】
  •         考察周期:【三个月内】
  •         事件口径:【成功付费】后的【三个月内】仍然【成功付费】


四、构建指标体系的步骤

①确定北极指标

北极星指标通常由公司高层决策,以OKR、KPI或者战略方向的形式传达。

    北极星与自身业务目标一致时直接使用即可。


        例如:某信息流产品以DAU 作为 KPI,而业务是信息流中短视频的 DAU。因为短视频的 DAU 是整个信息流产品 DAU 的组成部分,所以可将短视频的 DAU作为北极星指标。

    不一致时,拆解出和自己业务相关的指标,作为北极星。


        例如:某电商产品以有效注册用户量作为 KPI,而业务是电商产品的 DAU。因为这个业务指标 DAU 与整个产品的KPI并不一致,故拆解自己的DAU为新增用户量、留存用户量和回流用户量。其中新增用户量是产品 KPI的组成部分,故选择新增用户量作为北极星指标。


②完善口径与维度

业务口径:应该清晰地定义北极星,这样才能完成后续的指标拆解。

关联维度:北极星的维度可作为其他指标的参考,为后续多维分析奠定基础。

指标只有两种类型:

  •     数值型:如订单量、GMV、客单价等。
  •     比率型:如购买转化率、支付转化率、复购率等。


关联维度:下面列举了常见的关联维度

 

③完善口径与维度

从北极星指标开始,按照指标的口径逐步向下拆解为汇总指标,最终拆解为原子指标。

汇总指标按照业务口径拆解

    如有效购买转化率可拆解为:(成功付款人数 - 退款人数)÷ 下单购买人数


原子指标按关联维度拆解

    如客单价可拆解为:按城市统计的客单价、按年龄段统计的客单价等


④复核指标口径与维度

  •     每个指标的口径必须正确。
  •     不可以存在重复指标。
  •     上下级指标需要有明确的从属关系。
  •     指标的关联维度尽可能完备。

参考:一文看懂用户运营指标体系搭建逻辑

### 银行数据仓库中的指标体系设计与实现 #### 一、背景概述 全面的信息体系架构是支持商业银行战略决策、经营管理和风险控制的基础[^1]。为了有效利用这些信息资源,构建合理的数据仓库及其配套的指标体系至关重要。 #### 二、数仓指标体系的作用 ##### 主要作用 建立完善的数仓指标体系有助于提高数据分析效率,确保业务逻辑的一致性和准确性,并能更好地满足不同部门的需求。具体来说: - **一致性**:统一定义各项核心业务活动的关键绩效指标(KPI),使得跨部门间的数据交流更加顺畅; - **透明度**:清晰展示各层次间的关联关系,便于追踪问题根源并采取相应措施加以改进; - **灵活性**:允许快速响应市场变化和技术进步带来的新挑战; ##### 运用场景 该类系统广泛应用于信贷审批流程优化、客户细分模型训练等多个方面,在提升服务质量的同时也降低了运营成本。 #### 三、数仓指标体系的架构 根据不同企业的实际需求和发展阶段,可以采用不同的设计方案来搭建适合自身的数仓指标框架。以下是两种常见的模式——阿里巴巴集团和华为公司的做法对比分析。 ##### (一) 阿里巴巴指标体系 ###### 1. 原子指标 原子指标是最基本也是最原始的数据单元,通常来源于交易记录或其他操作日志文件。它们未经任何处理或转换,保持了最高的真实性和精确度。 ###### 2. 派生指标 基于多个原子指标计算得出的结果被称为派生指标。这类数值反映了特定时间段内的综合表现特征,如月均销售额增长率等。 ###### 3. 衍生指标 衍生指标则是通过对已有派生指标进一步加工而形成的高级统计量。它往往涉及到复杂的算法运算过程,旨在揭示隐藏于表面之下的深层次规律。 ##### (二) 华为指标体系 ###### 1. 原子指标 同样地,华为也将最小粒度的事实表字段视为其指标系统的基石部分。不过值得注意的是,该公司更加强调对敏感信息安全性的保护机制建设工作。 ###### 2. 衍生指标 除了常规意义上的聚合函数之外,华为还特别关注如何结合机器学习技术挖掘潜在价值点。这不仅限于简单的线性回归预测,还包括但不限于聚类分析、时间序列建模等多种方法论的应用实践。 ##### (三) 差异比较 尽管两者都遵循着相似的原则去规划各自的数仓结构布局,但在某些细节之处仍存在差异。例如,阿里的方案倾向于追求极致的速度体验,尽可能缩短ETL周期;相比之下,华为则把重点放在安全可控之上,力求做到万无一失。 #### 四、案例分享 以某大型国有银行为例,通过引入先进的大数据平台工具集成了来自各个渠道的历史沉淀资料之后,成功实现了对企业级视角下全貌画像描绘的目标。在此基础上所建立起的一套完整的KPI跟踪评价标准,既能够帮助管理层及时掌握最新动态趋势走向,又有利于基层员工日常工作的开展实施。 ```sql -- SQL查询示例用于获取过去一年内按月份汇总的新开户数量 SELECT DATE_FORMAT(open_date, '%Y-%m') AS month, COUNT(*) AS new_accounts_count FROM accounts WHERE open_date >= NOW() - INTERVAL 1 YEAR GROUP BY month; ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值