Llama3的最小版本8B和70B已经全面领先其他竞争对手的开源大模型。其中70B的模型相当于GPT-4的水平,其中8B和70B都可以在个人PC上跑起来,8B就是80亿参数的模型只需要8G+的显存就可以流畅跑起来,70B就是700亿参数的模型虽然宣称需要40G+的显存,经测试在个人电脑的16G的显存上也可以跑起来,就是吐字速度慢些。
几天前meta发布了史上最强开源大模型Llama3,要想免费使用Llama3,除了去官网 https://llama.meta.com/llama3/ 在线使用外,还可以本地部署。
本地部署有多种方式,常见的有如下3种方式:
1. github仓库clone后,https://github.com/meta-llama/llama3 安装python,pip相关的包,官网在线填写个人信息申请模型下载链接
2. LL-studio
3. ollama
其中以ollama部署最为便捷和友好,部署时间可在5分钟内完成。本篇就介绍ollama本地部署llama3模型。
step1:ollama官网(https://ollama.com/download)下载ollama,有mac,windows,linux三个版本,选择适合自己机器的版本下载并安装。
订阅专栏 解锁全文
13万+

被折叠的 条评论
为什么被折叠?



