版权声明
- 本文原创作者:谷哥的小弟
- 作者博客地址:http://blog.csdn.net/lfdfhl
1. Transformer模型概述
1.1 定义与核心特性
Transformer模型,首次提出于论文《Attention Is All You Need》,是一种基于注意力机制的神经网络架构。其核心特性在于能够处理序列数据,并高效捕捉序列中的长距离依赖关系。与传统的循环神经网络(RNN)和卷积神经网络(CNN)相比,Transformer模型能够并行处理序列中的所有元素,显著提高了计算效率。
Transformer模型的核心特性包括:
- 并行处理能力:由于不依赖于序列的时间步迭代,Transformer能够同时处理序列中的所有元素,这在处理长序列时尤为有效。
- 自注意力机制:模型能够为序列中的每个元素分配不同的权重,根据其与其他元素的关系动态调整,从而捕捉复杂的依赖关系。
- 灵活性:Transformer模型不仅适用于自然语言处理,还能扩展到语音识别、计算机视觉等领域,显示出其架构的通用性。
1.2 自注意力机制
自注意力机制是Transformer模型的基石,它允许模型在序列中的每个位置关注序列中的任意位置,从而捕捉序列内部的依赖关系。这种机制通过计算序列中每个元素对其他所有元素的注意力分数实现,然后将这些分数经过softmax函数归一化,以得到每个元素的加权表示。
自注意力机制的关键优势在于:
- 捕捉长距离依赖:自注意力机制能够直接捕捉序列中任意两个位置之间的依赖关系,不受距离限制。
- 可扩展性:通过堆叠多个自注意力层,模型能够处理更复杂的依赖关系,提升表示能力。
- 多头注意力:Transformer模型中的多头自注意力机制进一步扩展了模型的表示能力,允许模型同时从不同的角度捕捉信息。
1.3 架构组成
Transformer模型由编码器(Encoder)和解码器(Decoder)组成,每个部分由多个层(Layer)堆叠而成。编码器负责处理输入序列并提取特征,