变上限积分求导的原理

    这道题也有一种典型的错误解法,就是把x往t里面一代,求出来是f(0).然而这种方法一看就是错误的,因为f(0)是一个常数,如果这样是正确的,那么F就变成是一次函数了,而事实上我们这里的f是什么都不知道,怎么可能就把F的类型都判断出来了呢?

 

    那么有人就会疑惑了,为什么这个函数不能直接套用变上限函数的求导公式来做呢?其实我们用导数的定义来分析一下就清楚了。

    首先我们证明一下变上限函数的求导公式:

    接下来我们来对比一下当f中同时含有x和t时会有什么不同:

(吐槽一下这个该死的M,要不是想到了定积分的定义我就要被它搞死了)

 

    所以,为什么这个函数求导就不能直接把t换成x,想必就已经一目了然了,这是因为当f当中既有t又有x时,从导数的定义式看,f里面的x也要变成x+∆x,这就导致F(x+∆x)和F(x)这两个积分无法使用线性运算法则合成为一个积分。所以这时候盲目把t换成x就不对了。

    那么我们知道,对于这种变上限积分函数求导,我们通常是用换元法把f里面弄得干净一点再动手:

    这时候我们就是把原来的x-t当成了一个整体来考虑,所以就不需要再考虑之前那样两个积分能不能作线性运算的问题了。

评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值