学习大数据第五天:最小二乘法的Python实现(二)

本文介绍了如何使用Python的`scipy.optimize.leastsq`进行最小二乘法拟合,特别是在处理分段函数时遇到的问题。通过示例展示了如何修正差值函数以避免数组比较的错误,并提供了拟合多项式函数的案例。
摘要由CSDN通过智能技术生成

1.numpy.random.normal


numpy.random.normal

numpy.random. normal ( loc=0.0scale=1.0size=None )

Draw random samples from a normal (Gaussian) distribution.

The probability density function of the normal distribution, first derived by De Moivre and 200 years later by both Gauss and Laplace independently [R250], is often called the bell curve because of its characteristic shape (see the example below).

The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution of samples influenced by a large number of tiny, random disturbances, each with its own unique distribution [R250].

Parameters:

loc : float

Mean (“centre”) of the distribution.

scale : float

Standard deviation (spread or “width”) of the distribution.

size : int or tuple of ints, optional

Output shape. If the given shape is, e.g., 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值