1.numpy.random.normal
numpy.random.normal
-
numpy.random.
normal
(
loc=0.0,
scale=1.0,
size=None
)
-
Draw random samples from a normal (Gaussian) distribution.
The probability density function of the normal distribution, first derived by De Moivre and 200 years later by both Gauss and Laplace independently [R250], is often called the bell curve because of its characteristic shape (see the example below).
The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution of samples influenced by a large number of tiny, random disturbances, each with its own unique distribution [R250].
Parameters: loc : float
Mean (“centre”) of the distribution.
scale : float
Standard deviation (spread or “width”) of the distribution.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g.,