K-均值聚类算法是一种无监督学习算法,用于将数据集划分成K个簇,使同一簇内的数据点相互靠近,不同簇之间的数据点相互远离。
算法步骤如下:
1. 随机选择K个点作为中心点。
2. 将每个数据点分配到最近的中心点所在的簇中。
3. 计算每个簇的中心点,作为新的中心点。
4. 重复步骤2和步骤3,直到中心点不再发生变化或达到预设的迭代次数。
优点:
1. 算法容易实现,计算速度较快;
2. 算法可以自动判断分类的个数;
3. 适用于大规模数据集。
缺点:
1. 需要事先确定要分成的簇数K;
2. 对噪声和离群值敏感,处理不好可能导致分类错误;
3. 随机选取中心点可能导致陷入局部最优解。
需要注意的是,K-均值聚类算法对于数据的分布情况有一定的要求,适用于数据呈现出圆形或球形分布的情况,在处理其它形状的数据时效果不好。