K-均值聚类算法

K-均值聚类算法是一种无监督学习算法,用于将数据集划分成K个簇,使同一簇内的数据点相互靠近,不同簇之间的数据点相互远离。

算法步骤如下:

1. 随机选择K个点作为中心点。
2. 将每个数据点分配到最近的中心点所在的簇中。
3. 计算每个簇的中心点,作为新的中心点。
4. 重复步骤2和步骤3,直到中心点不再发生变化或达到预设的迭代次数。

优点:
1. 算法容易实现,计算速度较快;
2. 算法可以自动判断分类的个数;
3. 适用于大规模数据集。

缺点:
1. 需要事先确定要分成的簇数K;
2. 对噪声和离群值敏感,处理不好可能导致分类错误;
3. 随机选取中心点可能导致陷入局部最优解。

需要注意的是,K-均值聚类算法对于数据的分布情况有一定的要求,适用于数据呈现出圆形或球形分布的情况,在处理其它形状的数据时效果不好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一叶屋檐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值