AI绘画:利用ComfyUI串联Refiner模型进行文生图细化提升绘图质量

本文将带你进一步探索如何将Refiner模型整合到你的工作流中,以实现更精细的图像细化。通过本教程,你将能够掌握如何使用Refiner模型来提升你的AI绘画作品的细节和质量。

简化教程:

首先,我们需要在流程中添加Refiner模型。

  1. 打开之前的文生图流程。
  2. 在流程的适当位置(例如文生图下方),添加一个新的Checkpoint加载器节点。
  3. 将该加载器的模型更改为Refiner模型。
关键词输入

为了使Refiner模型能够使用相同的关键词,我们需要进行一些调整。

  1. 在原有的CLIP文本编码器节点上,右键点击并选择“转换文本为输入”。
  2. 新建一个Primitive元节点作为输入关键词的节点。
  3. CLIP文本编码器的输出连接到Primitive元节点的输入。
  4. 复制一组CLIP文本编码器节点,用于连接Refiner模型。
使用K采样器(高级)

在细化流程中,我们需要使用高级采样器来控制生成过程。

  1. 选择K采样器(高级)而不是普通的K采样器。
  2. 在高级采样器中,设置添加噪波开始降噪步数结束降噪步数返回噪波选项。
    • 对于基础模型的采样器,启用添加噪波,从第0步开始降噪。
    • 对于Refiner模型的采样器,禁用添加噪波,开始降噪步数与基础模型的结束步数相对应,结束步数默认即可。
    • 启用基础模型采样器的返回噪波,禁用Refiner模型采样器的返回噪波
  3. 连接基础模型和Refiner模型的采样器。
VAE解码及保存图像

接下来,我们需要连接VAE解码和保存图像的节点。

  1. 将Refiner模型的采样器连接到VAE解码节点。
  2. 可以选择任何一个大模型的VAE进行连接,或者通过VAE加载器加载一个VAE模型。
  3. 运行流程并检查是否有错误。

详细操作和截图:

打开流程

加载Refiner模型

首先,我们需要在流程中添加Refiner模型。如果你已经有一个正在运行的基础文生图流程,可以直接在其下方添加新的节点。

  • 在ComfyUI界面中找到空白区域,右键点击选择“新建节点” -> “加载器” -> “Checkpoint加载器”。
  • 将新添加的Checkpoint加载器的模型更改为Refiner模型。
关键词输入

为了简化操作,我们可以将已有的关键词输入复用到Refiner模型中。

  • 在原有的“CLIP文本编码器”节点上右键点击,选择“转换文本为输入”。
  • 新建一个“实用工具” -> “Primitive元节点”作为输入关键词的节点。
  • 将“CLIP文本编码器”的输出连接到“Primitive元节点”的输入,这样关键词就会显示在新的节点上,并且可以进行修改。
  • 复制一组“CLIP文本编码器”节点,并将它们连接到Refiner模型。

使用K采样器(高级)

为了适应Refiner模型的工作方式,我们需要使用“K采样器(高级)”。

  • 在Refiner模型中选择“K采样器(高级)”。
  • 在采样器设置中,调整“添加噪波”、“开始降噪步数”、“结束降噪步数”和“返回噪波”选项以匹配Refiner模型的需求。
  • 连接Refiner采样器的“Latent”输出到Base采样器的相应输入。

VAE解码及保存图像

连接VAE解码和保存图像节点,以便在细化过程中生成和保存图像。

  • 将Refiner采样器的输出连接到VAE解码节点。
  • 根据需要,可以选择连接到任何一个大模型的VAE,或者通过“VAE加载器”加载一个单独的VAE模型。

知识点扩展

为了简化操作和流程管理,我们可以将一些常用的参数提取出来,使用“Primitive元节点”进行统一管理。

  • 在Base采样器上右键点击,选择“转换步数为输入”和“转换结束降噪步数为输入”。
  • 在Refiner采样器上右键点击,选择“转换步数为输入”和“转换开始降噪步数为输入”。
  • 新建“Primitive元节点”作为输入节点,用于统一设置步数和结束/开始降噪步数。

最终效果:

结语

通过本教程,你现在应该能够熟练地在ComfyUI中串联Refiner模型进行文生图细化操作。这将极大地提升你的创作效率和作品质量。记得在完成流程后保存你的工作,以便将来可以重复使用或进行进一步的优化。不断实践和探索,你将能够充分利用ComfyUI和Refiner模型的强大功能,创作出更加精彩的AI艺术作品。

最后的最后,如果你足够懒,学习了上述内容后,直接下载已经做好的流程图吧。附上这两张的附件(含完整流程图json):

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

### ComfyUI Refiner模型使用说明 在ComfyUI中,Refiner模型用于改进由基础模型生成的结果。通过引入Refiner模型,可以显著提升像的质量和细节层次。为了更好地理解和应用这些模型,在安装并配置好ComfyUI环境之后,需遵循特定的工作流程。 #### 安装Refiner模型 首先访问官方GitHub仓库[^1]获取最新的支持列表和支持文件。对于大多数情况下推荐使用的Refiner模型之一是`sd_xl_refiner_0.9.safetensors`版本。下载完成后将其放置于指定目录下(通常是`models\refiner`),以便软件能够识别加载该模型。 #### 配置与调用Refiner模型 当准备就绪后,在ComfyUI界面上创建新的工作流时,可以从左侧工具栏找到名为“Load Checkpoint”的节点来加载已有的Base Model以及对应的VAE组件。接着添加另一个相同类型的节点专门用来读取刚才提到过的Refiner checkpoint文件。这两个节点之间应该建立连接以指示数据流动方向。 ```mermaid graph LR; A[Load Base Model] --> B[Connect with VAE]; C[Load Refiner Model] -.->|Optional, connect only when refining|B; ``` 完成上述设置以后,用户可以在执行推理过程中选择是否启用此增强特性,并调整相关参数如权重比例等影响最终输出效果的因素[^2]。 #### 实际案例展示 考虑到实际应用场景中的需求差异较大,这里提供了一个简单的例子作为参考: 假设现在有一张低分辨率的人像照片希望通过ComfyUI进行超分处理得到更精细的画面表现形式。此时除了正常输入原始素材外还需要额外接入一个经过预训练的Refiner模块负责捕捉更多面部特征从而达到理想状态下的视觉呈现目的[^3]。 ```python from comfyui import load_model, process_image_with_refinement base_checkpoint_path = "./models/base/sd-v1-5-inpainting.ckpt" vae_path = "./models/vae/model.vae.pt" refiner_checkpoint_path = "./models/refiner/sd_xl_refiner_0.9.safetensors" image_output = process_image_with_refinement( base_checkpoint=load_model(base_checkpoint_path), vae=load_model(vae_path), refiner_checkpoint=load_model(refiner_checkpoint_path), input_image="path/to/input/image.png", refinement_strength=0.8 # 可调节强度值 ) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值