可变形卷积系列(三) Deformable Kernels,创意满满的可变形卷积核 | ICLR 2020

论文提出可变形卷积核(DK)来自适应有效感受域,每次进行卷积操作时都从原卷积中采样出新卷积,是一种新颖的可变形卷积的形式,从实验来看,是之前方法的一种有力的补充。

来源:晓飞的算法工程笔记 公众号

论文: Deformable Kernels: Adapting Effective Receptive Fields for Object Deformation

Introduction


  传统的卷积由于存在硬性的规则,在对于物体放大或旋转时,不能作出适应性的改变,而可变形卷积则通过改变输入的采样位置来进行适应性的改变,即改变理论感受域。但理论感受域并不能度量像素对输出的贡献,相比理论感受域,更重要的是有效感受域(ERF),通过计算输出对应输入的偏导获得(与卷积权重相关),改变理论感受域只是改变有效感受域的一种手段。
  为此,论文提出可变形卷积核(Deformable Kernels, DK),用于进行可变形建模的新型卷积操作,在推理时根据输入直接生成新的卷积核来改变有效感受域。如图d,DK学习卷积核的偏移来对原卷积进行重新采样,而不改变输入数据。从实验结果来看,DK对分类任务和检测任务都十分有效,结合旧的可变形卷积方法能产生更好的结果。

Approach


  对有效感受域概念不感兴趣的可以直奔后面对可变形卷积核的描述,前面有效感受域的介绍不影响后面内容。

A Dive into Convolutions

  • 2D Convolution

  大小为 K × K K\times K K×K,stride为1的二维卷积操作如公式1,输出为目标区域像素与卷积核乘积的和, K = [ − K / 2 , K / 2 ] 2 \mathcal{K}=[-K/2,K/2]^2 K=[K/2,K/2]2

  • Theoretical Receptive Field

  卷积层单个输出相对于上一层的输入的感受域大小为卷积核大小 K × K K\times K K×K,当卷积层叠加起来时,单个输出的对应的隔层感受域也会因此而叠加,得到的叠加区域即理论感受域,与卷积核大小 K K K和网络深度 n n n线性相关。

  • Effective Receptive Field

  由于卷积的叠加以及非线性激活的引入,理论感受域内的像素对输出的贡献各不相同,可以使用有效感受域(ERF)来度量区域内每个像素对输出的影响,通过计算输出对应像素值的偏导得到,具体可以看参考论文。

Analysis on Effective Receptive Fields

  这里主要分析如何根据输入和一系列卷积来计算有效感受域,先分析线性卷积网络的情景,再拓展到非线性卷积网络。

  对于线性卷积网络,给定 I ( 0 ) I^{(0)} I(0)为输入图片以及stride为1的 K × K K\times K K×K卷积权重合集 { W ( s ) } s = 1 n \{W^{(s)}\}_{s=1}^n {W(s)}s=1n,公式1可以展开为公式2,特征图 I I I和卷积权重 W W W的上标以及卷积核位置 k k k的下标为层数 s ∈ [ 1 , n ] s\in [1, n] s[1,n]

  根据ERF的定义,输出坐标 j j j对应输入坐标 i i i的有效感受域值 R ( n ) ( i ; j ) = ∂ I j ( n ) / ∂ I i ( 0 ) \mathcal{R}^{(n)}(i;j)=\partial I_j^{(n)} / \partial I_i^{(0)} R(n)(i;j)=Ij(n)/Ii(0)计算为公式3, 1 [ ⋅ ] \Bbb{1}[\cdot] 1[]为指示函数。公式3的意义为所有从 i i i j j j的路径的权重和,权重的计算为卷积核权重的累积,有效感受域值跟输出的采样位置 j j j、卷积核位置 k k k以及卷积核权重 { W ( s ) } \{W^{(s)}\} {W(s)}有关。

  假设将第 m m m个卷积核 W ( m ) W^{(m)} W(m)替换为 1 × 1 1\times 1 1×1卷积核 W k ~ m ( m ) W_{\tilde{k}_m}^{(m)} Wk~m(m),ERF的计算会变为公式4, S = [ 1 , n ] S=[1,n] S=[1,n]\ m m m即不包含 m m m层,这里每条路径权重直接乘上 W k ~ m ( m ) W_{\tilde{k}_m}^{(m)} Wk~m(m),因为 m m m层只有一个路径,符合指示函数的路径必定包含 k m k_m km

K × K K\times K K×K卷积可以看成分散在矩形区域内的 K 2 K^2 K2 1 × 1 1\times 1 1×1卷积,因此,公式3可以改写成公式5,将 m m m层的 K × K K\times K K×K卷积看成多个 1 × 1 1\times 1 1×1卷积,相对的输出位置也要进行相应的修改(这里应该为 j − k m j-k_m jkm比较合适)。

  对于复杂的非线性卷积,在公式1中加入ReLU激活得到公式6,即每层卷积都接激活函数。

  非线性版本的有效感受域值计算为上式,因子 C \mathcal{C} C使得ERF值变成与数据相关,实际中的有效感受域是不规则的形状,包含许多不规则分布的零值。
  需要注意,公式4和公式5的计算是线性的,使得有效感受域值计算能与内核的线性采样操作兼容,比如使用双线性插值获得小数位置的内核值,即可以认为内核采样等对数据进行线性ERF采样(ERF与输出的采样位置 j j j、卷积核位置 k k k以及卷积核权重 { W ( s ) } \{W^{(s)}\} {W(s)}有关),这种兼容性也可以相似地推广到非线性的情况下。基于以上的分析,论文提出可变形卷积核(Deformable Kernels, DK)。

Deformable Kernels(DK)

  DK添加了可学习的核偏移值,使得输出的计算从公式1变为公式7,ERF的计算也变成了与核偏移值相关的公式8。由于偏移值通常包含小数,使用双线性插值来计算偏移后的值。
  原卷积核的大小称为score size,一般DK对scope size是没有约束的,即可以从大小为 K ′ K^{'} K的原卷积中采样出 K 2 K^2 K2的新卷积,然后用于大小为 K 2 K^2 K2区域上。这样网络能够尽可能使用更大的原卷积而不会带来太多的额外计算,论文最大的原卷积为 9 × 9 9\times 9 9×9

  如图2,DK有两种实现形式,全局模式和局部模式, G \mathscr{G} G为可学习的核偏移值生成器,将输入块转换为内核的偏移值:

  • 全局模式 G g l o b a l \mathscr{G}_{global} Gglobal的实现为global average pooling层+全连接层,分别用于降维以及输出 2 K 2 2K^2 2K2个偏移值。
  • 局部模式 G l o c a l \mathscr{G}_{local} Glocal的实现为与目标卷积大小一样的卷积操作,输出为 2 K 2 2K^2 2K2维,最终输出为 2 K 2 × 1 × 1 2K^2\times 1\times 1 2K2×1×1

  全局模式更关注整体图片,根据整图进行核偏移,而局部模式则更关注图片的局部区域,对于小物体,生成形状特别的核(值差异大),从而使得ERF更密集,而对于大物体,生成较扁平的核(值差异小),使得ERF更广阔。一般情况下,局部模式的自由度更高。

Computation Flow of Deformable Kernels

  图5展示了局部DK的计算示意图,偏移值生成器根据输入生成偏移值,将目标卷积的点均匀平铺在原卷积中,然后根据偏移值进行偏移,使用双线性插值计算偏移后的权重更新目标卷积,最后使用目标卷积对输入进行卷积输出。

  前向时,给予原卷积 W W W和学习到的卷积核偏移 { Δ k } \{ \Delta k \} {Δk},结合双线性插值 B \mathcal{B} B生成目标卷积 W ′ W^{'} W,然后使用目标卷积对输入进行常规的卷积输出。

  DK的反向传播需要生成3种梯度:

  • 前一层特征图的梯度
  • 当前层原生卷积的梯度
  • 当前层偏移值生成器的梯度

  前两种的计算方法与普通的卷积一样,第三种则使用公式13结合双线性插值的计算方法。

Link with Deformable Convolutions

  DK的核心是学习适应输入的偏移值来原卷积进行采样,从而达到可变形的目的,整体思想可能与可变形卷积类似。

  可变形卷积的计算如公式9,主要是对数据进行偏移,而有效感受域则为公式10。如前面说到的,有效感受域与输出的采样位置以及卷积核位置有关,这在一定程度上了解释可变形卷积为何适用于学习形状多变的目标。

  假设同时对数据和核进行偏移,输出的计算以及有效感受域的计算如公式11,尽管两种方法的目的是类似的,但在实际中发现,两种方法协作能够带来很好更好的效果。

Experiments


  实验主要针对深度卷积(depthwise convolutions)进行优化,内核偏移不能超过越过score size。基础模型为ResNet-50-DW和MobileNetV2,对比实验加入条件卷积(Conditional Convolutions)和可变形卷积(Deformable Convolutions)的对比。

Image Classification

Object Detection

What do Deformable Kernels Learn?

  将MobileNet-V2的最后一层卷积进行t-SNE降维得到可视化结果,点的颜色为类别(10类)或bbox尺寸(10等分),对比DK和条件卷积,条件卷积学习到语义相关的特征,而DK则学习到尺寸相关的特征,这解释了前面的实验两种方法同时使用效果更好。

  对不同的卷积的有效感受域进行了可视化,可变形卷积与DK都能产生类似的适应ERF,但可变形卷积倾向于更广阔的响应,DK则倾向于集中在物体内部,两者结合效果最佳。

CONCLUSION


  论文提出可变形卷积核(DK)来自适应有效感受域,每次进行卷积操作时都从原卷积中采样出新卷积,是一种新颖的可变形卷积的形式,从实验来看,是之前方法的一种有力的补充。



如果本文对你有帮助,麻烦点个赞或在看呗~
更多内容请关注 微信公众号【晓飞的算法工程笔记】

work-life balance.

  • 5
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值