DARTS是很经典的NAS方法,它的出现打破了以往的离散的网络搜索模式,能够进行end-to-end的网络搜索。由于DARTS是基于梯度进行网络更新的,所以更新的方向比较准确,搜索时间相当于之前的方法有很大的提升,CIFAR-10的搜索仅需要4GPU days。
来源:晓飞的算法工程笔记 公众号
论文: DARTS: Differentiable Architecture Search
Introduction
目前流行的神经网络搜索方法大都是对离散的候选网络进行选择,而DARTS则是对连续的搜索空间进行搜索,并根据验证集的表现使用梯度下降进行网络结构优化,论文的主要贡献如下:
- 基于bilevel优化提出创新的gradient-based神经网络搜索方法DARTS,适用于卷积结构和循环结构。
- 通过实验表明gradient-based结构搜索方法在CIFAR-10和PTB数据集上都有很好的竞争力。
- 搜索性能很强,仅需要少量GPU days,主要得益于gradient-based优化模式。
- 通过DARTS在CIFAR-10和PTB上学习到的网络能够转移到大数据集ImageNet和WikiText-2上。
Differentiable Architecture Search
Search Space
DARTS的整体搜索框架跟NASNet等方法一样,通过搜索计算单元(cell)的作为网络的基础结构,然后堆叠成卷积网络或者循环网络。计算单元是个有向无环图,包含 N N N个节点的有序序列,每个节点 x ( i ) x^{(i)} x(i)代表网络的中间信息(如卷积网络的特征图),边代表对 x ( i ) x^{(i)} x(i)的操作 o ( i , j ) o^{(i,j)} o(i,j)。每个计算单元有两个输入和一个输出,对于卷积单元,输入为前两层的计算单元的输出,对于循环网络,输入则为当前step的输入和前一个step的状态,两者的输出均为将中间节点的所有输出进行合并操作。每个中间节点的计算基于前面所有的节点:
这里包含一个特殊的zero操作,用来指定两个节点间没有连接。DARTS将计算单元的学习转换为边操作的学习,整体搜索框架跟NASNet等方法一样,本文主要集中在DARTS如何进行gradient-based的搜索。
Continuous Relaxation and Optimization
让 O O O为候选操作集,每个操作代表应用于 x ( i ) x^{(i)} x(i)的函数 o ( ⋅ ) o(\cdot) o(⋅),为了让搜索空间连续化,将原本的离散操作选择转换为所有操作的softmax加权输出:
节点
(
i
,
j
)
(i,j)
(i,j)间的操作的混合权重表示为维度
∣
O
∣
|O|
∣O∣的向量
α
(
i
,
j
)
\alpha^{(i,j)}
α(i,j),整个架构搜索则简化为学习连续的值
α
=
{
α
(
i
,
j
)
}
\alpha=\{\alpha^{(i, j)}\}
α={α(i,j)},如图1所示。在搜索的最后,每个节点选择概率最大的操作
o
(
i
,
j
)
=
a
r
g
m
a
x
o
∈
O
α
o
(
i
,
j
)
o^{(i,j)}=argmax_{o\in O}\alpha^{(i,j)}_o
o(i,j)=argmaxo∈Oαo(i,j)代替
o
ˉ
(
i
,
j
)
\bar{o}^{(i,j)}
oˉ(i,j),构建出最终的网络。
在简化后,DARTS目标是够同时学习网络结构
α
\alpha
α和所有的操作权值
w
w
w。对比之前的方法,DARTS能够根据验证集损失使用梯度下降进行结构优化。定义
L
t
r
a
i
n
\mathcal{L}_{train}
Ltrain和
L
v
a
l
\mathcal{L}_{val}
Lval为训练和验证集损失,损失由网络结构
α
\alpha
α和网络权值
w
w
w共同决定,搜索的最终目的是找到最优的
α
∗
\alpha^{*}
α∗来最小化验证集损失
L
v
a
l
(
w
∗
,
α
∗
)
\mathcal{L}_{val}(w^{*}, \alpha^{*})
Lval(w∗,α∗),其中网络权值
w
∗
w^{*}
w∗则是通过最小化训练损失
w
∗
=
a
r
g
m
i
n
w
L
t
r
a
i
n
(
w
,
α
∗
)
w^{*}=argmin_w \mathcal{L}_{train}(w, \alpha^{*})
w∗=argminwLtrain(w,α∗)获得。这意味着DARTS是个bilevel优化问题,使用验证集优化网络结构,使用训练集优化网络权重,
α
\alpha
α为上级变量,
w
w
w为下级变量:
Approximate Architecture Gradient
公式3计算网络结构梯度的开销是很大的,主要在于公式4的内层优化,即每次结构的修改都需要重新训练得到网络的最优权重。为了简化这一操作,论文提出了提出了简单的近似的改进:
w w w表示当前的网络权重, ξ \xi ξ是内层优化单次更新的学习率,整体的思想是在网络结构改变后,通过单次训练step优化 w w w来逼近 w ( ∗ ) ( α ) w^{(*)}(\alpha) w(∗)(α),而不是公式3那样需要完整地训练直到收敛。实际当权值 w w w为内层优化的局部最优解时( ∇ w L t r a i n ( w , α ) = 0 \nabla_{w}\mathcal{L}_{train}(w, \alpha)=0 ∇wLtrain(w,α)=0),公式6等同于公式5 ∇ α L v a l ( w , α ) \nabla_{\alpha}\mathcal{L}_{val}(w, \alpha) ∇αLval(w,α)。
迭代的过程如算法1,交替更新网络结构和网络权重,每次的更新都仅使用少量的数据。根据链式法则,公式6可以展开为:
w ′ = w − ξ ∇ w L t r a i n ( w , α ) w^{'}=w - \xi \nabla_w \mathcal{L}_{train}(w, \alpha) w′=w−ξ∇wLtrain(w,α),上述的式子的第二项计算的开销很大,论文使用有限差分来近似计算,这是论文很关键的一步。 ϵ \epsilon ϵ为小标量, w ± = w ± ϵ ∇ w ′ L v a l ( w ′ , α ) w^{\pm}=w\pm \epsilon \nabla_{w^{'}} \mathcal{L}_{val}(w^{'}, \alpha) w±=w±ϵ∇w′Lval(w′,α),得到:
计算最终的差分需要两次正向+反向计算,计算复杂度从 O ( ∣ α ∣ ∣ w ∣ ) O(|\alpha| |w|) O(∣α∣∣w∣)简化为 O ( ∣ α ∣ + ∣ w ∣ ) O(|\alpha|+|w|) O(∣α∣+∣w∣)。
当 ξ = 0 \xi=0 ξ=0时,公式7的二阶导会消失,梯度由 ∇ α L ( w , α ) \nabla_{\alpha}\mathcal{L}(w, \alpha) ∇αL(w,α)决定,即认为当前权值总是最优的,直接通过网络结构修改来优化验证集损失。 ξ = 0 \xi=0 ξ=0能加速搜索的过程,但也可能会带来较差的表现。当 ξ = 0 \xi=0 ξ=0时,论文称之为一阶近似,当 ξ > 0 \xi > 0 ξ>0时,论文称之为二阶近似。
Deriving Discrete Architectures
在构建最终的网络结构时,每个节点选取来自不同节点的top-k个响应最强的非zero操作,响应强度通过 e x p ( α ( i , j ) o ) ∑ o ′ ∈ O e x p ( α o ′ ( i , j ) ) \frac{exp(\alpha^{(i,j)_o})}{\sum_{o^{'}\in O}exp(\alpha^{(i,j)}_{o^{'}})} ∑o′∈Oexp(αo′(i,j))exp(α(i,j)o)计算。为了让搜索的网络性能更好,卷积单元设置 k = 2 k=2 k=2,循环单元设置 k = 1 k=1 k=1。过滤zero操作主要让每个节点有足够多的输入,这样才能与当前的SOTA模型进行公平比较。
Experiments and Results
搜索耗时,其中run代表多次搜索取最好的结果。
搜索到的结构。
CIFAR-10上的性能对比。
PTB上的性能对比。
迁移到ImageNet上的性能对比。
Conclustion
DARTS是很经典的NAS方法,它的出现打破了以往的离散的网络搜索模式,能够进行end-to-end的网络搜索。由于DARTS是基于梯度进行网络更新的,所以更新的方向比较准确,搜索时间相当于之前的方法有很大的提升,CIFAR-10的搜索仅需要4GPU days。
如果本文对你有帮助,麻烦点个赞或在看呗~
更多内容请关注 微信公众号【晓飞的算法工程笔记】