自省式RAG 与 LangGraph的实践

本文介绍了自省式RAG(Retrieval-Augmented Generation)的概念,它利用大型语言模型进行自我校正,提高检索质量和生成内容的品质。通过LangGraph工具,实现了自省式RAG的流程,展示了其在CRAG(Corrective RAG)和Self-RAG中的应用,强调了状态机在支持循环操作和决策点中的重要性。自省机制使RAG能够自我纠正检索和生成过程中的问题,提升了整体功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自省式 RAG

对实现 RAG 的步骤进行逻辑分析:比如,我们需要知道什么时候进行检索(基于问题和索引的构成)、何时改写问题以提升检索效率,或者何时抛弃无关的检索结果并重新检索。因此提出了自省式 RAG,自省式 RAG 利用大型语言模型自我校正检索质量不佳或生成内容不够优质的问题。

基础 RAG 流程,实质上是种链式过程:大型语言模型根据检索到的文档来决定生成的内容。有些 RAG 运作模式采用的是路由机制,大型语言模型会根据提出的问题选择不同的检索器。但是自省式 RAG 通常需要某种反馈机制,比如重新生成问题或重新检索文档。这时候,状态机制作为第三种认知架构,因其能够支持循环操作而非常适用:状态机可定义一系列步骤(例如检索、评估文档、改写问题)并设置它们的转换逻辑;比如,如果我们检索到的文档无关,我们可以重新改写问题再进行检索。

图片

利用认知架构实施 RAG 的示意图

利用 LangGraph 实现自省式 RAG

LangGraph,简单

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值