pytorch里面nn.Module讲解

本文详细介绍了PyTorch中nn.Module类的重要作用,包括提供现成的模块,如Linear和Conv2d,作为容器组织网络,管理参数,方便在GPU上运行,以及如何保存和加载模型。nn.Module还允许在训练和测试模式间切换,并支持自定义模块,如创建自定义线性层,便于网络优化和复杂操作的实现。
摘要由CSDN通过智能技术生成

nn.Module是在pytorch使用非常广泛的类,搭建网络基本都需要用到这个。

当我们搭建自己的网络时,可以继承官方写好的nn.Module模块,为什么要用这个呢?好处如下:

1.可以提供一些现成的基本模块比如:

Linear、ReLU、Sigmoid、Conv2d、Dropout

不用自己一个一个的写这些函数了,这也是为什么我们用框架的原因之一吧。

2. 容器

比如我们经常用到的 nn.Sequential(),顾名思义,将网络模块封装在一个容器中,可以方面网络搭建
如下面一个例子:

class TestNet(nn.Module):
    def __init__(self):
        super(TestNet, self).__init__()
        self.net = nn.Sequential(nn.Conv2d(1, 16, stride=1, padding=1),
                                 nn.MaxPool2d(2, 2),
                                 Flatten(),
                                 nn.Linear(1*14*14, 10))
    def forward(self, x):
        return self.net(x)

3.参数管理

参数名字可以自动生成(想想如果自己去命名,百万参数的网络没法搭建),然后这些参数都可以传到优化器里面去优化

4. 所有modules的节点 孩子节点都是直系的

class BasicNet(nn.Module):
    def __init__(self):
        super(BasicNet, self).__init__(
PyTorch是一个流行的深度学习库,常用于金融领域中的时间序列分析,比如股票价格预测。循环神经网络(RNNs),尤其是长短期记忆网络(LSTM)或门控循环单元(GRU),因其能够处理变长输入序列的特点,在这种任务上非常有效。 下面是一个简单的例子,概述如何使用PyTorch构建一个LSTM模型进行股票价格预测: ```python import torch from torch import nn # 假设我们有收盘价数据 closing_prices = ... # 形状为 (sequences, time_steps, features) 的Tensor # 数据预处理,例如归一化、填充序列等 inputs, targets = ... class StockPredictionModel(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(StockPredictionModel, self).__init__() self.rnn = nn.LSTM(input_size, hidden_size) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x): h0 = torch.zeros(1, x.size(0), self.hidden_size).to(device) # 初始化隐藏状态 c0 = torch.zeros(1, x.size(0), self.hidden_size).to(device) # 初始化细胞状态 out, _ = self.rnn(x, (h0, c0)) # 运行RNN并得到输出 out = self.fc(out[:, -1, :]) # 取最后一个时间步的输出作为预测值 return out model = StockPredictionModel(input_size=1, hidden_size=64, output_size=1) # 创建模型 optimizer = torch.optim.Adam(model.parameters()) # 定义优化器 criterion = nn.MSELoss() # 定义损失函数 for epoch in range(num_epochs): # 训练过程 optimizer.zero_grad() predictions = model(inputs) loss = criterion(predictions, targets) loss.backward() optimizer.step()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值