特异度(specificity)与灵敏度(sensitivity)

本文介绍了在二分类问题中,敏感性(真阳性率,TPR)和特异性(真阴性率,TNR)的概念及其计算公式。敏感性衡量了分类器识别正例的能力,特异性则关注正确识别负例的比例。这些指标常用于评估分类器的性能,与其他评价标准如准确率(ACC)、假阳性率(FPR)等一起使用,帮助优化模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

在论文阅读的过程中,经常遇到使用特异性(specificity)和灵敏度(sensitivity)这两个指标来描述分类器的性能。对这两个指标表示的含有一些模糊,这里查阅了相关资料后记录一下。

基础知识

考虑一个二分类的情况,类别为1和0,我们将1和0分别作为正类(positive)和负类(negative),则实际分类的结果有4种,表格如下:从这个表格中可以引出一些其它的评价指标:

在这里插入图片描述

  • ACC:classification accuracy,描述分类器的分类准确率
    计算公式为:ACC=(TP+TN)/(TP+FP+FN+TN)
  • BER:balanced error rate
    计算公式为:BER=1/2*(FPR+FN/(FN+TP))
  • TPR:true positive rate,描述识别出的所有正例占所有正例的比例
    计算公式为:TPR=TP/ (TP+ FN)
  • FPR:false positive rate,描述将负例识别为正例的情况占所有负例的比例
    计算公式为:FPR= FP / (FP + TN)
  • TNR:true negative rate,描述识别出的负例占所有负例的比例
    计算公式为:TNR= TN / (FP + TN)
  • PPVPositive predictive value
    计算公式为:PPV=TP / (TP + FP)
  • NPVNegative predictive value
    计算公式:NPV=TN / (FN + TN)
    其中TPR即为敏感度(sensitivity),TNR即为特异度(specificity)。

参考资料

哪个大神能解释一下敏感性和特异性?学了好几年了一直不是很清楚-知乎
ROC曲线-百度百科
Positive and negative predictive values

注:文中的图片均来自参考资料。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值