Hadoop MapReduce之作业提交(服务端)

  客户端在提交一个作业的时候,会通过RPC调用服务端接口提交该作业,此时运行做的配置文件可jar文件已经上传到了HDFS中,服务端作业提交的过程中会创建该作业的实例JobInProgress,然后把该对象加入作业监控和初始化两个Listener中,另外还包含一些校验操作,比如所在队列是否在运行,内存配置是否超出限制等,重头戏是JobInProgress的创建,提交过程如下:
  public JobStatus submitJob(JobID jobId, String jobSubmitDir, Credentials ts)
      throws IOException {
    JobInfo jobInfo = null;
    //获得提交用户信息
    UserGroupInformation ugi = UserGroupInformation.getCurrentUser();
    //防止job重复提交
    synchronized (this) {
      if (jobs.containsKey(jobId)) {
        // job already running, don't start twice
        return jobs.get(jobId).getStatus();
      }
      //建立JobInfo,包含jobid、提交用户、和提交目录信息,该类同样实现了Writable接口
      jobInfo = new JobInfo(jobId, new Text(ugi.getShortUserName()),
          new Path(jobSubmitDir));
    }
    
    // Create the JobInProgress, do not lock the JobTracker since
    // we are about to copy job.xml from HDFS
    JobInProgress job = null;
    try {
    	//创建JobInProgress,包含作业的统计信息,如map数量、reduce数量、正在运行
    	//的MR数量、失败的任务次数、成功多少、完成多少等等。。
      job = new JobInProgress(this, this.conf, jobInfo, 0, ts);
    } catch (Exception e) {
      throw new IOException(e);
    }
    
    synchronized (this) {
      // 检测队列是否在运行,默认队列名为default
      String queue = job.getProfile().getQueueName();
      if (!queueManager.isRunning(queue)) {
        throw new IOException("Queue \"" + queue + "\" is not running");
      }
      try {
        aclsManager.checkAccess(job, ugi, Operation.SUBMIT_JOB);
      } catch (IOException ioe) {
        LOG.warn("Access denied for user " + job.getJobConf().getUser()
            + ". Ignoring job " + jobId, ioe);
        job.fail();
        throw ioe;
      }


      // 检查作业的内存配置
      try {
        checkMemoryRequirements(job);
      } catch (IOException ioe) {
        throw ioe;
      }
      boolean recovered = true; // TODO: Once the Job recovery code is there,
      // (MAPREDUCE-873) we
      // must pass the "recovered" flag accurately.
      // This is handled in the trunk/0.22
      if (!recovered) {
        // Store the information in a file so that the job can be recovered
        // later (if at all)
        Path jobDir = getSystemDirectoryForJob(jobId);
        FileSystem.mkdirs(fs, jobDir, new FsPermission(SYSTEM_DIR_PERMISSION));
        FSDataOutputStream out = fs.create(getSystemFileForJob(jobId));
        jobInfo.write(out);
        out.close();
      }
      
      // 提交作业,返回作业状态
      JobStatus status;
      try {
        status = addJob(jobId, job);
      } catch (IOException ioe) {
        LOG.info("Job " + jobId + " submission failed!", ioe);
        status = job.getStatus();
        status.setFailureInfo(StringUtils.stringifyException(ioe));
        failJob(job);
        throw ioe;
      }
      
      return status;
    }
  }
JobInProgress的创建过程如下:
  JobInProgress(JobTracker jobtracker, final JobConf default_conf, 
      JobInfo jobInfo, int rCount, Credentials ts) 
  throws IOException, InterruptedException {
    try {
      this.restartCount = rCount;//重启次数
      this.jobId = JobID.downgrade(jobInfo.getJobID());//获得jobid
      //获得监控作业的URL
      String url = "http://" + jobtracker.getJobTrackerMachine() + ":" 
      + jobtracker.getInfoPort() + "/jobdetails.jsp?jobid=" + jobId;
      this.jobtracker = jobtracker;
      //创建新的作业状态,初始值为4,准备状态
      this.status = new JobStatus(jobId, 0.0f, 0.0f, JobStatus.PREP);
      this.status.setUsername(jobInfo.getUser().toString());
      this.jobtracker.getInstrumentation().addPrepJob(conf, jobId);
      // 设置启动时间
      this.startTime = jobtracker.getClock().getTime();
      status.setStartTime(startTime);
      //获得本地文件系统
      this.localFs = jobtracker.getLocalFileSystem();


      this.tokenStorage = ts;
      // 获得提交目录
      jobSubmitDir = jobInfo.getJobSubmitDir();
      user = jobInfo.getUser().toString();
      userUGI = UserGroupInformation.createRemoteUser(user);
      if (ts != null) {
        for (Token<? extends TokenIdentifier> token : ts.getAllTokens()) {
          userUGI.addToken(token);
        }
      }


      fs = userUGI.doAs(new PrivilegedExceptionAction<FileSystem>() {
        public FileSystem run() throws IOException {
          return jobSubmitDir.getFileSystem(default_conf);
        }});
      
      //检测作业配置文件job.xml尺寸
      Path submitJobFile = JobSubmissionFiles.getJobConfPath(jobSubmitDir);
      FileStatus fstatus = fs.getFileStatus(submitJobFile);
      if (fstatus.getLen() > jobtracker.MAX_JOBCONF_SIZE) {
        throw new IOException("Exceeded max jobconf size: " 
            + fstatus.getLen() + " limit: " + jobtracker.MAX_JOBCONF_SIZE);
      }
      //设置本地配置文件名称,并把HDFS中的配置文件拷贝的本地
      this.localJobFile = default_conf.getLocalPath(JobTracker.SUBDIR
          +"/"+jobId + ".xml");
      Path jobFilePath = JobSubmissionFiles.getJobConfPath(jobSubmitDir);
      jobFile = jobFilePath.toString();
      fs.copyToLocalFile(jobFilePath, localJobFile);
      conf = new JobConf(localJobFile);
      if (conf.getUser() == null) {
        this.conf.setUser(user);
      }
      //提交用户检测
      if (!conf.getUser().equals(user)) {
        String desc = "The username " + conf.getUser() + " obtained from the " +
        "conf doesn't match the username " + user + " the user " +
        "authenticated as";
        AuditLogger.logFailure(user, Operation.SUBMIT_JOB.name(), conf.getUser(), 
            jobId.toString(), desc);
        throw new IOException(desc);
      }
      //优先级设置,用于后面的resort
      this.priority = conf.getJobPriority();
      this.status.setJobPriority(this.priority);
      String queueName = conf.getQueueName();
      this.profile = new JobProfile(user, jobId, 
          jobFile, url, conf.getJobName(), queueName);


      Queue queue = this.jobtracker.getQueueManager().getQueue(queueName);
      if (queue == null) {
        throw new IOException("Queue \"" + queueName + "\" does not exist");
      }
      this.queueMetrics = queue.getMetrics();
      this.queueMetrics.addPrepJob(conf, jobId);
			//通用属性设置:提交节点的主机名、IP、map数、reduce数
      this.submitHostName = conf.getJobSubmitHostName();
      this.submitHostAddress = conf.getJobSubmitHostAddress();
      this.numMapTasks = conf.getNumMapTasks();
      this.numReduceTasks = conf.getNumReduceTasks();
			//内存设置
      this.memoryPerMap = conf.getMemoryForMapTask();
      this.memoryPerReduce = conf.getMemoryForReduceTask();
			//任务事件列表,在客户端查询作业状态时会把该数据返回,可以反映任务状态
      this.taskCompletionEvents = new ArrayList<TaskCompletionEvent>
      (numMapTasks + numReduceTasks + 10);


      // Construct the jobACLs
      status.setJobACLs(jobtracker.getJobACLsManager().constructJobACLs(conf));
			//MR允许失败比例的配置
      this.mapFailuresPercent = conf.getMaxMapTaskFailuresPercent();
      this.reduceFailuresPercent = conf.getMaxReduceTaskFailuresPercent();
			//一个作业最大允许失败数
      this.maxTaskFailuresPerTracker = conf.getMaxTaskFailuresPerTracker();
			//是否允许推测执行
      hasSpeculativeMaps = conf.getMapSpeculativeExecution();
      hasSpeculativeReduces = conf.getReduceSpeculativeExecution();
      // a limit on the input size of the reduce.
      // we check to see if the estimated input size of 
      // of each reduce is less than this value. If not
      // we fail the job. A value of -1 just means there is no
      // limit set.
      reduce_input_limit = -1L;
      this.maxLevel = jobtracker.getNumTaskCacheLevels();
      this.anyCacheLevel = this.maxLevel+1;
      this.nonLocalMaps = new LinkedList<TaskInProgress>();
      this.failedMaps = new TreeSet<TaskInProgress>(failComparator);
      this.nonLocalRunningMaps = new LinkedHashSet<TaskInProgress>();
      this.runningMapCache = new IdentityHashMap<Node, Set<TaskInProgress>>();
      this.nonRunningReduces = new TreeSet<TaskInProgress>(failComparator);
      this.runningReduces = new LinkedHashSet<TaskInProgress>();
      this.resourceEstimator = new ResourceEstimator(this);
      this.reduce_input_limit = conf.getLong("mapreduce.reduce.input.limit", 
          DEFAULT_REDUCE_INPUT_LIMIT);
      // register job's tokens for renewal
      DelegationTokenRenewal.registerDelegationTokensForRenewal(
          jobInfo.getJobID(), ts, jobtracker.getConf());
      
      // 最大任务数校验
      checkTaskLimits();
    } finally {
      //close all FileSystems that was created above for the current user
      //At this point, this constructor is called in the context of an RPC, and
      //hence the "current user" is actually referring to the kerberos
      //authenticated user (if security is ON).
      FileSystem.closeAllForUGI(UserGroupInformation.getCurrentUser());
    }
  }
下面介绍一个初始化的job是如何加入到监控和初始化队列中的,在submitJob函数中,创建JobInProgress后会提交该job:status = addJob(jobId, job);队列的添加在这行代码中完成
  private synchronized JobStatus addJob(JobID jobId, JobInProgress job) 
  throws IOException {
    totalSubmissions++;


    synchronized (jobs) {
      synchronized (taskScheduler) {
      	//在JobTracker中记录该job
        jobs.put(job.getProfile().getJobID(), job);
        for (JobInProgressListener listener : jobInProgressListeners) {
          listener.jobAdded(job);//向两个Listener中添加该job,JobQueueJobInProgressListener和EagerTaskInitializationListener
        }
      }
    }
    myInstrumentation.submitJob(job.getJobConf(), jobId);
    job.getQueueMetrics().submitJob(job.getJobConf(), jobId);


    LOG.info("Job " + jobId + " added successfully for user '" 
             + job.getJobConf().getUser() + "' to queue '" 
             + job.getJobConf().getQueueName() + "'");
    //记录提交日志
    AuditLogger.logSuccess(job.getUser(), 
        Operation.SUBMIT_JOB.name(), jobId.toString());
    return job.getStatus();
  }
至此,job的提交工作就完成了,下面JT会初始化该job,以后的文章中会继续介绍。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值